Cargando…
A computational method for the coupled solution of reaction–diffusion equations on evolving domains and manifolds: Application to a model of cell migration and chemotaxis
In this paper, we devise a moving mesh finite element method for the approximate solution of coupled bulk–surface reaction–diffusion equations on an evolving two dimensional domain. Fundamental to the success of the method is the robust generation of bulk and surface meshes. For this purpose, we use...
Autores principales: | MacDonald, G., Mackenzie, J.A., Nolan, M., Insall, R.H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4896117/ https://www.ncbi.nlm.nih.gov/pubmed/27330221 http://dx.doi.org/10.1016/j.jcp.2015.12.038 |
Ejemplares similares
-
Exact Solutions of Coupled Multispecies Linear Reaction–Diffusion Equations on a Uniformly Growing Domain
por: Simpson, Matthew J., et al.
Publicado: (2015) -
The entropy solution of a reaction–diffusion equation on an unbounded domain
por: Zhan, Huashui, et al.
Publicado: (2019) -
Integral manifolds and inertial manifolds for dissipative partial differential equations
por: Constantin, P, et al.
Publicado: (1989) -
Stochastic differential equations on manifolds
por: Elworthy, K D
Publicado: (1982) -
Differential equations on complex manifolds
por: Sternin, Boris, et al.
Publicado: (1994)