Cargando…
Exploring dependence between categorical variables: Benefits and limitations of using variable selection within Bayesian clustering in relation to log-linear modelling with interaction terms
This manuscript is concerned with relating two approaches that can be used to explore complex dependence structures between categorical variables, namely Bayesian partitioning of the covariate space incorporating a variable selection procedure that highlights the covariates that drive the clustering...
Autores principales: | Papathomas, Michail, Richardson, Sylvia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4896165/ https://www.ncbi.nlm.nih.gov/pubmed/27330244 http://dx.doi.org/10.1016/j.jspi.2016.01.002 |
Ejemplares similares
-
Generalized linear models for categorical and continuous limited dependent variables
por: Smithson, Michael, et al.
Publicado: (2013) -
Bayesian Analysis of ANOVA and Mixed Models on the Log-Transformed Response Variable
por: Gardini, Aldo, et al.
Publicado: (2021) -
Cluster Analysis of Categorical Variables of Parkinson’s Disease Patients
por: Hendricks, Renee, et al.
Publicado: (2021) -
On the correspondence of deviances and maximum-likelihood and interval estimates from log-linear to logistic regression modelling
por: Jing, W., et al.
Publicado: (2020) -
Variability in the Log Domain and Limitations to Its Approximation by the Normal Distribution
por: Elassaiss‐Schaap, Jeroen, et al.
Publicado: (2020)