Cargando…
Automated Mapping of Phenotype Space with Single-Cell Data
Accurate and rapid identification of cell populations is key to discovering novelty in multidimensional single cell experiments. We present a population finding algorithm X-shift that can process large datasets using fast KNN estimation of cell event density and automatically arranges populations by...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4896314/ https://www.ncbi.nlm.nih.gov/pubmed/27183440 http://dx.doi.org/10.1038/nmeth.3863 |
_version_ | 1782436006199296000 |
---|---|
author | Samusik, Nikolay Good, Zinaida Spitzer, Matthew H. Davis, Kara L. Nolan, Garry P. |
author_facet | Samusik, Nikolay Good, Zinaida Spitzer, Matthew H. Davis, Kara L. Nolan, Garry P. |
author_sort | Samusik, Nikolay |
collection | PubMed |
description | Accurate and rapid identification of cell populations is key to discovering novelty in multidimensional single cell experiments. We present a population finding algorithm X-shift that can process large datasets using fast KNN estimation of cell event density and automatically arranges populations by a marker-based classification system. X-shift analysis of mouse bone marrow data resolved the majority of known and several previously undescribed cell populations. Interestingly, previously known cell populations, as well as intermediate cell populations in early hematopoietic development, were described via novel marker combinations that were defined via routes to their locations in expressed marker space. X-shift provides a rapid, reliable approach to managed cell subset analysis that maximizes automation that not only best mimics human intuition, but as we show provides access to novel insights that “prior knowledge” might prevent the researcher from visualizing. |
format | Online Article Text |
id | pubmed-4896314 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
record_format | MEDLINE/PubMed |
spelling | pubmed-48963142016-11-16 Automated Mapping of Phenotype Space with Single-Cell Data Samusik, Nikolay Good, Zinaida Spitzer, Matthew H. Davis, Kara L. Nolan, Garry P. Nat Methods Article Accurate and rapid identification of cell populations is key to discovering novelty in multidimensional single cell experiments. We present a population finding algorithm X-shift that can process large datasets using fast KNN estimation of cell event density and automatically arranges populations by a marker-based classification system. X-shift analysis of mouse bone marrow data resolved the majority of known and several previously undescribed cell populations. Interestingly, previously known cell populations, as well as intermediate cell populations in early hematopoietic development, were described via novel marker combinations that were defined via routes to their locations in expressed marker space. X-shift provides a rapid, reliable approach to managed cell subset analysis that maximizes automation that not only best mimics human intuition, but as we show provides access to novel insights that “prior knowledge” might prevent the researcher from visualizing. 2016-05-16 2016-06 /pmc/articles/PMC4896314/ /pubmed/27183440 http://dx.doi.org/10.1038/nmeth.3863 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Samusik, Nikolay Good, Zinaida Spitzer, Matthew H. Davis, Kara L. Nolan, Garry P. Automated Mapping of Phenotype Space with Single-Cell Data |
title | Automated Mapping of Phenotype Space with Single-Cell Data |
title_full | Automated Mapping of Phenotype Space with Single-Cell Data |
title_fullStr | Automated Mapping of Phenotype Space with Single-Cell Data |
title_full_unstemmed | Automated Mapping of Phenotype Space with Single-Cell Data |
title_short | Automated Mapping of Phenotype Space with Single-Cell Data |
title_sort | automated mapping of phenotype space with single-cell data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4896314/ https://www.ncbi.nlm.nih.gov/pubmed/27183440 http://dx.doi.org/10.1038/nmeth.3863 |
work_keys_str_mv | AT samusiknikolay automatedmappingofphenotypespacewithsinglecelldata AT goodzinaida automatedmappingofphenotypespacewithsinglecelldata AT spitzermatthewh automatedmappingofphenotypespacewithsinglecelldata AT daviskaral automatedmappingofphenotypespacewithsinglecelldata AT nolangarryp automatedmappingofphenotypespacewithsinglecelldata |