Cargando…
Automated Mapping of Phenotype Space with Single-Cell Data
Accurate and rapid identification of cell populations is key to discovering novelty in multidimensional single cell experiments. We present a population finding algorithm X-shift that can process large datasets using fast KNN estimation of cell event density and automatically arranges populations by...
Autores principales: | Samusik, Nikolay, Good, Zinaida, Spitzer, Matthew H., Davis, Kara L., Nolan, Garry P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4896314/ https://www.ncbi.nlm.nih.gov/pubmed/27183440 http://dx.doi.org/10.1038/nmeth.3863 |
Ejemplares similares
-
Proliferative tracing with single-cell mass cytometry optimizes generation of stem cell memory-like T cells
por: Good, Zinaida, et al.
Publicado: (2019) -
Scalable multi-sample single-cell data analysis by Partition-Assisted Clustering and Multiple Alignments of Networks
por: Li, Ye Henry, et al.
Publicado: (2017) -
Profiling myelodysplastic syndromes by mass cytometry demonstrates abnormal progenitor cell phenotype and differentiation
por: Behbehani, Gregory K., et al.
Publicado: (2020) -
Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed Imaging
por: Goltsev, Yury, et al.
Publicado: (2018) -
A method for validation for clustering of phenotypic gene knockdown profiles using protein-protein interactions information
por: Samusik, Nikolay, et al.
Publicado: (2009)