Cargando…
Large-scale machine learning for metagenomics sequence classification
Motivation: Metagenomics characterizes the taxonomic diversity of microbial communities by sequencing DNA directly from an environmental sample. One of the main challenges in metagenomics data analysis is the binning step, where each sequenced read is assigned to a taxonomic clade. Because of the la...
Autores principales: | Vervier, Kévin, Mahé, Pierre, Tournoud, Maud, Veyrieras, Jean-Baptiste, Vert, Jean-Philippe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4896366/ https://www.ncbi.nlm.nih.gov/pubmed/26589281 http://dx.doi.org/10.1093/bioinformatics/btv683 |
Ejemplares similares
-
A large scale evaluation of TBProfiler and Mykrobe for antibiotic resistance prediction in Mycobacterium tuberculosis
por: Mahé, Pierre, et al.
Publicado: (2019) -
Predicting bacterial resistance from whole-genome sequences using k-mers and stability selection
por: Mahé, Pierre, et al.
Publicado: (2018) -
A strategy to build and validate a prognostic biomarker model based on RT-qPCR gene expression and clinical covariates
por: Tournoud, Maud, et al.
Publicado: (2015) -
SLINGER: large-scale learning for predicting gene expression
por: Vervier, Kévin, et al.
Publicado: (2016) -
Machine Learning for In Silico Virtual Screening and Chemical Genomics: New Strategies
por: Vert, Jean-Philippe, et al.
Publicado: (2008)