Cargando…
SVD-phy: improved prediction of protein functional associations through singular value decomposition of phylogenetic profiles
Summary: A successful approach for predicting functional associations between non-homologous genes is to compare their phylogenetic distributions. We have devised a phylogenetic profiling algorithm, SVD-Phy, which uses truncated singular value decomposition to address the problem of uninformative pr...
Autores principales: | Franceschini, Andrea, Lin, Jianyi, von Mering, Christian, Jensen, Lars Juhl |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4896368/ https://www.ncbi.nlm.nih.gov/pubmed/26614125 http://dx.doi.org/10.1093/bioinformatics/btv696 |
Ejemplares similares
-
Energy Efficient GNSS Signal Acquisition Using Singular Value Decomposition (SVD)
por: Bermúdez Ordoñez, Juan Carlos, et al.
Publicado: (2018) -
DupliPHY-Web: a web server for DupliPHY and DupliPHY-ML
por: Ames, Ryan M., et al.
Publicado: (2015) -
MOSS: multi-omic integration with sparse value decomposition
por: Gonzalez-Reymundez, Agustin, et al.
Publicado: (2022) -
svdPPCS: an effective singular value decomposition-based method for conserved and divergent co-expression gene module identification
por: Zhang, Wensheng, et al.
Publicado: (2010) -
Identification of nutrient partitioning genes participating in rice grain filling by singular value decomposition (SVD) of genome expression data
por: Anderson, Abraham, et al.
Publicado: (2003)