Cargando…
Multivariate Methods for Genetic Variants Selection and Risk Prediction in Cardiovascular Diseases
Over the last decade, high-throughput genotyping and sequencing technologies have contributed to major advancements in genetics research, as these technologies now facilitate affordable mapping of the entire genome for large sets of individuals. Given this, genome-wide association studies are provin...
Autores principales: | Malovini, Alberto, Bellazzi, Riccardo, Napolitano, Carlo, Guffanti, Guia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4896915/ https://www.ncbi.nlm.nih.gov/pubmed/27376073 http://dx.doi.org/10.3389/fcvm.2016.00017 |
Ejemplares similares
-
Dataset on linear and non-linear indices for discriminating healthy and IUGR fetuses
por: Signorini, Maria G., et al.
Publicado: (2020) -
Hierarchical Naive Bayes for genetic association studies
por: Malovini, Alberto, et al.
Publicado: (2012) -
Effect of causative genetic variants on atherosclerotic cardiovascular disease in heterozygous familial hypercholesterolemia patients
por: Matta, Anthony, et al.
Publicado: (2023) -
Genetically predicted phosphate and cardiovascular disease: A Mendelian randomization study
por: Huang, Jiniu, et al.
Publicado: (2022) -
Circulating Biomarkers for Cardiovascular Disease Risk Prediction in Patients With Cardiovascular Disease
por: Wong, Yuen-Kwun, et al.
Publicado: (2021)