Cargando…

An Experimental Approach for Optimizing Coating Parameters of Electroless Ni-P-Cu Coating Using Artificial Bee Colony Algorithm

This paper aims to present an experimental investigation for optimum tribological behavior (wear depth and coefficient of friction) of electroless Ni-P-Cu coatings based on four process parameters using artificial bee colony algorithm. Experiments are carried out by utilizing the combination of thre...

Descripción completa

Detalles Bibliográficos
Autores principales: Roy, Supriyo, Sahoo, Prasanta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897047/
https://www.ncbi.nlm.nih.gov/pubmed/27382630
http://dx.doi.org/10.1155/2014/976869
Descripción
Sumario:This paper aims to present an experimental investigation for optimum tribological behavior (wear depth and coefficient of friction) of electroless Ni-P-Cu coatings based on four process parameters using artificial bee colony algorithm. Experiments are carried out by utilizing the combination of three coating process parameters, namely, nickel sulphate, sodium hypophosphite, and copper sulphate, and the fourth parameter is postdeposition heat treatment temperature. The design of experiment is based on the Taguchi L(27) experimental design. After coating, measurement of wear and coefficient of friction of each heat-treated sample is done using a multitribotester apparatus with block-on-roller arrangement. Both friction and wear are found to increase with increase of source of nickel concentration and decrease with increase of source of copper concentration. Artificial bee colony algorithm is successfully employed to optimize the multiresponse objective function for both wear depth and coefficient of friction. It is found that, within the operating range, a lower value of nickel concentration, medium value of hypophosphite concentration, higher value of copper concentration, and higher value of heat treatment temperature are suitable for having minimum wear and coefficient of friction. The surface morphology, phase transformation behavior, and composition of coatings are also studied with the help of scanning electron microscopy, X-ray diffraction analysis, and energy dispersed X-ray analysis, respectively.