Cargando…
The Mass of Graviton and Its Relation to the Number of Information according to the Holographic Principle
We investigate the relation of the mass of the graviton to the number of information N in a flat universe. As a result we find that the mass of the graviton scales as [Formula: see text]. Furthermore, we find that the number of gravitons contained inside the observable horizon is directly proportion...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897075/ https://www.ncbi.nlm.nih.gov/pubmed/27433513 http://dx.doi.org/10.1155/2014/718251 |
_version_ | 1782436080703766528 |
---|---|
author | Haranas, Ioannis Gkigkitzis, Ioannis |
author_facet | Haranas, Ioannis Gkigkitzis, Ioannis |
author_sort | Haranas, Ioannis |
collection | PubMed |
description | We investigate the relation of the mass of the graviton to the number of information N in a flat universe. As a result we find that the mass of the graviton scales as [Formula: see text]. Furthermore, we find that the number of gravitons contained inside the observable horizon is directly proportional to the number of information N; that is, N (gr) ∝ N. Similarly, the total mass of gravitons that exist in the universe is proportional to the number of information N; that is, [Formula: see text]. In an effort to establish a relation between the graviton mass and the basic parameters of the universe, we find that the mass of the graviton is simply twice the Hubble mass m (H) as it is defined by Gerstein et al. (2003), times the square root of the quantity q − 1/2, where q is the deceleration parameter of the universe. In relation to the geometry of the universe we find that the mass of the graviton varies according to the relation [Formula: see text] , and therefore m (gr) obviously controls the geometry of the space time through a deviation of the geodesic spheres from the spheres of Euclidean metric. |
format | Online Article Text |
id | pubmed-4897075 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-48970752016-07-18 The Mass of Graviton and Its Relation to the Number of Information according to the Holographic Principle Haranas, Ioannis Gkigkitzis, Ioannis Int Sch Res Notices Research Article We investigate the relation of the mass of the graviton to the number of information N in a flat universe. As a result we find that the mass of the graviton scales as [Formula: see text]. Furthermore, we find that the number of gravitons contained inside the observable horizon is directly proportional to the number of information N; that is, N (gr) ∝ N. Similarly, the total mass of gravitons that exist in the universe is proportional to the number of information N; that is, [Formula: see text]. In an effort to establish a relation between the graviton mass and the basic parameters of the universe, we find that the mass of the graviton is simply twice the Hubble mass m (H) as it is defined by Gerstein et al. (2003), times the square root of the quantity q − 1/2, where q is the deceleration parameter of the universe. In relation to the geometry of the universe we find that the mass of the graviton varies according to the relation [Formula: see text] , and therefore m (gr) obviously controls the geometry of the space time through a deviation of the geodesic spheres from the spheres of Euclidean metric. Hindawi Publishing Corporation 2014-10-29 /pmc/articles/PMC4897075/ /pubmed/27433513 http://dx.doi.org/10.1155/2014/718251 Text en Copyright © 2014 I. Haranas and I. Gkigkitzis. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Haranas, Ioannis Gkigkitzis, Ioannis The Mass of Graviton and Its Relation to the Number of Information according to the Holographic Principle |
title | The Mass of Graviton and Its Relation to the Number of Information according to the Holographic Principle |
title_full | The Mass of Graviton and Its Relation to the Number of Information according to the Holographic Principle |
title_fullStr | The Mass of Graviton and Its Relation to the Number of Information according to the Holographic Principle |
title_full_unstemmed | The Mass of Graviton and Its Relation to the Number of Information according to the Holographic Principle |
title_short | The Mass of Graviton and Its Relation to the Number of Information according to the Holographic Principle |
title_sort | mass of graviton and its relation to the number of information according to the holographic principle |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897075/ https://www.ncbi.nlm.nih.gov/pubmed/27433513 http://dx.doi.org/10.1155/2014/718251 |
work_keys_str_mv | AT haranasioannis themassofgravitonanditsrelationtothenumberofinformationaccordingtotheholographicprinciple AT gkigkitzisioannis themassofgravitonanditsrelationtothenumberofinformationaccordingtotheholographicprinciple AT haranasioannis massofgravitonanditsrelationtothenumberofinformationaccordingtotheholographicprinciple AT gkigkitzisioannis massofgravitonanditsrelationtothenumberofinformationaccordingtotheholographicprinciple |