Cargando…
Tan's Epsilon-Determinant and Ranks of Matrices over Semirings
We use the ϵ-determinant introduced by Ya-Jia Tan to define a family of ranks of matrices over certain semirings. We show that these ranks generalize some known rank functions over semirings such as the determinantal rank. We also show that this family of ranks satisfies the rank-sum and Sylvester i...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897142/ https://www.ncbi.nlm.nih.gov/pubmed/27347506 http://dx.doi.org/10.1155/2015/242515 |
Sumario: | We use the ϵ-determinant introduced by Ya-Jia Tan to define a family of ranks of matrices over certain semirings. We show that these ranks generalize some known rank functions over semirings such as the determinantal rank. We also show that this family of ranks satisfies the rank-sum and Sylvester inequalities. We classify all bijective linear maps which preserve these ranks. |
---|