Cargando…

Numerical Simulation of Nonlinear Pulsatile Newtonian Blood Flow through a Multiple Stenosed Artery

An appropriate nonlinear blood flow model under the influence of periodic body acceleration through a multiple stenosed artery is investigated with the help of finite difference method. The arterial segment is simulated by a cylindrical tube filled with a viscous incompressible Newtonian fluid descr...

Descripción completa

Detalles Bibliográficos
Autores principales: Changdar, Satyasaran, De, Soumen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897152/
https://www.ncbi.nlm.nih.gov/pubmed/27347534
http://dx.doi.org/10.1155/2015/628605
Descripción
Sumario:An appropriate nonlinear blood flow model under the influence of periodic body acceleration through a multiple stenosed artery is investigated with the help of finite difference method. The arterial segment is simulated by a cylindrical tube filled with a viscous incompressible Newtonian fluid described by the Navier-Stokes equation. The nonlinear equation is solved numerically with the proper boundary conditions and pressure gradient that arise from the normal functioning of the heart. Results are discussed in comparison with the existing models.