Cargando…
Entrapment of α-Amylase in Agar Beads for Biocatalysis of Macromolecular Substrate
Attempts have been made to optimize immobilization parameters, catalytic property, and stability of immobilized α-amylase in agar. The work compares natural entrapment efficiency of agar with the ionotropically cross-linked agar hydrogel, with the advantage of easy scale-up and cost and time effecti...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897204/ https://www.ncbi.nlm.nih.gov/pubmed/27382608 http://dx.doi.org/10.1155/2014/936129 |
Sumario: | Attempts have been made to optimize immobilization parameters, catalytic property, and stability of immobilized α-amylase in agar. The work compares natural entrapment efficiency of agar with the ionotropically cross-linked agar hydrogel, with the advantage of easy scale-up and cost and time effectiveness. Beads prepared with 3% (w/v) agar and 75 mM calcium chloride and hardened for 20 minutes were selected for further studies on the basis of entrapment efficiency (80%) and physical stability. Following entrapment, pH and temperature optima of enzyme were shifted from 6 to 6.5 and 50 to 55°C, respectively. Michaelis constant (K (m)) for both free and entrapped enzymes remained the same (0.83%) suggesting no change in substrate affinity. However, V (max) of entrapped enzyme decreased ~37.5-fold. The midpoint of thermal inactivation for entrapped enzyme increased by 8 ± 1°C implying its higher thermal stability. The entrapped enzyme in calcium agar bead had an E(a) value of 27.49 kcal/mol compared to 17.6 kcal/mol for free enzyme indicating increased stability on entrapment. Half-life of enzyme increased ~2.2 times after entrapment in calcium agar at 60°C indicating stabilization of enzyme. The reusability of beads was size dependent. Beads with diameter <710 μm were stable and could be reused for 6 cycles with ~22% loss in activity. |
---|