Cargando…
Black Plane Solutions and Localized Gravitational Energy
We explore the issue of gravitational energy localization for static plane-symmetric solutions of the Einstein-Maxwell equations in 3+1 dimensions with asymptotic anti-de Sitter behavior. We apply three different energy-momentum complexes, the Einstein, Landau-Lifshitz, and Møller prescriptions, to...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897214/ https://www.ncbi.nlm.nih.gov/pubmed/27347499 http://dx.doi.org/10.1155/2015/109329 |
_version_ | 1782436109939113984 |
---|---|
author | Halpern, Paul Roberts, Jennifer |
author_facet | Halpern, Paul Roberts, Jennifer |
author_sort | Halpern, Paul |
collection | PubMed |
description | We explore the issue of gravitational energy localization for static plane-symmetric solutions of the Einstein-Maxwell equations in 3+1 dimensions with asymptotic anti-de Sitter behavior. We apply three different energy-momentum complexes, the Einstein, Landau-Lifshitz, and Møller prescriptions, to the metric representing this category of solutions and determine the energy distribution for each. We find that the three prescriptions offer identical energy distributions, suggesting their utility for this type of model. |
format | Online Article Text |
id | pubmed-4897214 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-48972142016-06-26 Black Plane Solutions and Localized Gravitational Energy Halpern, Paul Roberts, Jennifer Int Sch Res Notices Research Article We explore the issue of gravitational energy localization for static plane-symmetric solutions of the Einstein-Maxwell equations in 3+1 dimensions with asymptotic anti-de Sitter behavior. We apply three different energy-momentum complexes, the Einstein, Landau-Lifshitz, and Møller prescriptions, to the metric representing this category of solutions and determine the energy distribution for each. We find that the three prescriptions offer identical energy distributions, suggesting their utility for this type of model. Hindawi Publishing Corporation 2015-08-06 /pmc/articles/PMC4897214/ /pubmed/27347499 http://dx.doi.org/10.1155/2015/109329 Text en Copyright © 2015 P. Halpern and J. Roberts. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Halpern, Paul Roberts, Jennifer Black Plane Solutions and Localized Gravitational Energy |
title | Black Plane Solutions and Localized Gravitational Energy |
title_full | Black Plane Solutions and Localized Gravitational Energy |
title_fullStr | Black Plane Solutions and Localized Gravitational Energy |
title_full_unstemmed | Black Plane Solutions and Localized Gravitational Energy |
title_short | Black Plane Solutions and Localized Gravitational Energy |
title_sort | black plane solutions and localized gravitational energy |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897214/ https://www.ncbi.nlm.nih.gov/pubmed/27347499 http://dx.doi.org/10.1155/2015/109329 |
work_keys_str_mv | AT halpernpaul blackplanesolutionsandlocalizedgravitationalenergy AT robertsjennifer blackplanesolutionsandlocalizedgravitationalenergy |