Cargando…

Lifetime Estimation of the Upper Stage of GSAT-14 in Geostationary Transfer Orbit

The combination of atmospheric drag and lunar and solar perturbations in addition to Earth's oblateness influences the orbital lifetime of an upper stage in geostationary transfer orbit (GTO). These high eccentric orbits undergo fluctuations in both perturbations and velocity and are very sensi...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeyakodi David, Jim Fletcher, Sharma, Ram Krishan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897220/
https://www.ncbi.nlm.nih.gov/pubmed/27437491
http://dx.doi.org/10.1155/2014/864953
Descripción
Sumario:The combination of atmospheric drag and lunar and solar perturbations in addition to Earth's oblateness influences the orbital lifetime of an upper stage in geostationary transfer orbit (GTO). These high eccentric orbits undergo fluctuations in both perturbations and velocity and are very sensitive to the initial conditions. The main objective of this paper is to predict the reentry time of the upper stage of the Indian geosynchronous satellite launch vehicle, GSLV-D5, which inserted the satellite GSAT-14 into a GTO on January 05, 2014, with mean perigee and apogee altitudes of 170 km and 35975 km. Four intervals of near linear variation of the mean apogee altitude observed were used in predicting the orbital lifetime. For these four intervals, optimal values of the initial osculating eccentricity and ballistic coefficient for matching the mean apogee altitudes were estimated with the response surface methodology using a genetic algorithm. It was found that the orbital lifetime from these four time spans was between 144 and 148 days.