Cargando…
A Real Valued Neural Network Based Autoregressive Energy Detector for Cognitive Radio Application
A real valued neural network (RVNN) based energy detector (ED) is proposed and analyzed for cognitive radio (CR) application. This was developed using a known two-layered RVNN model to estimate the model coefficients of an autoregressive (AR) system. By using appropriate modules and a well-designed...
Autores principales: | Onumanyi, A. J., Onwuka, E. N., Aibinu, A. M., Ugweje, O. C., Salami, M. J. E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897321/ https://www.ncbi.nlm.nih.gov/pubmed/27379318 http://dx.doi.org/10.1155/2014/579125 |
Ejemplares similares
-
Low Power Wide Area Network, Cognitive Radio and the Internet of Things: Potentials for Integration
por: Onumanyi, Adeiza J., et al.
Publicado: (2020) -
Age of Information Minimization for Radio Frequency Energy-Harvesting Cognitive Radio Networks
por: Sun, Juan, et al.
Publicado: (2022) -
Brain Synchronization and Multivariate Autoregressive (MVAR) Modeling in Cognitive Neurodynamics
por: Bressler, Steven L., et al.
Publicado: (2022) -
A Reweighted Scheme to Improve the Representation of the Neural Autoregressive Distribution Estimator
por: Wang, Zheng, et al.
Publicado: (2018) -
Detection of Parameter Change in Random Coefficient Integer-Valued Autoregressive Models
por: Kang, Jiwon
Publicado: (2018)