Cargando…

Treatment of Palm Oil Mill Effluent by a Microbial Consortium Developed from Compost Soils

A method for the aerobic treatment of palm oil mill effluent (POME) was investigated in shake-flask experiments using a consortium developed from POME compost. POME was initially centrifuged at 4,000 g for 15 min and the supernatant was enriched with (NH(4))(2)SO(4) (0.5%) and yeast extract (0.25%)...

Descripción completa

Detalles Bibliográficos
Autores principales: Nwuche, Charles O., Aoyagi, Hideki, Ogbonna, James C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897343/
https://www.ncbi.nlm.nih.gov/pubmed/27433536
http://dx.doi.org/10.1155/2014/762070
Descripción
Sumario:A method for the aerobic treatment of palm oil mill effluent (POME) was investigated in shake-flask experiments using a consortium developed from POME compost. POME was initially centrifuged at 4,000 g for 15 min and the supernatant was enriched with (NH(4))(2)SO(4) (0.5%) and yeast extract (0.25%) to boost its nitrogen content. At optimum pH (pH 4) and temperature (40°C) conditions, the chemical oxygen demand (COD) of the effluent decreased from 10,350 to 1,000 mg/L (90.3%) after 7 days. The total bacterial population determined by plate count enumeration was 2.4 × 10(6) CFU/mL, while the fungal count was 1.8 × 10(3) colonies/mL. Bacteria of the genera Pseudomonas, Flavobacterium, Micrococcus, and Bacillus were isolated, while the fungal genera included Aspergillus, Penicillium, Trichoderma, and Mucor. When the isolated species were each inoculated into separate batches of the raw effluent, both pH and COD were unchanged. However, at 75 and 50% POME dilutions, the COD dropped by 52 and 44%, respectively, while the pH increased from 4 to 7.53. POME treatment by aerobic method is sustainable and holds promising prospects for cushioning the environment from the problems associated with the use of anaerobic systems.