Cargando…
Ensemble Nonlinear Autoregressive Exogenous Artificial Neural Networks for Short-Term Wind Speed and Power Forecasting
Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an e...
Autores principales: | Men, Zhongxian, Yee, Eugene, Lien, Fue-Sang, Yang, Zhiling, Liu, Yongqian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897406/ https://www.ncbi.nlm.nih.gov/pubmed/27382627 http://dx.doi.org/10.1155/2014/972580 |
Ejemplares similares
-
Mixture EMOS model for calibrating ensemble forecasts of wind speed
por: Baran, S., et al.
Publicado: (2016) -
Forecasting the prevalence of COVID-19 outbreak in Egypt using nonlinear autoregressive artificial neural networks
por: Saba, Amal I., et al.
Publicado: (2020) -
Computational Acoustic Beamforming for Noise Source Identification for Small Wind Turbines
por: Ma, Ping, et al.
Publicado: (2017) -
A novel Bayesian ensembling model for wind power forecasting
por: Tang, Jingwei, et al.
Publicado: (2022) -
Short-Time Wind Speed Forecast Using Artificial Learning-Based Algorithms
por: Ibrahim, Mariam, et al.
Publicado: (2020)