Cargando…

Optimal Variational Asymptotic Method for Nonlinear Fractional Partial Differential Equations

We propose optimal variational asymptotic method to solve time fractional nonlinear partial differential equations. In the proposed method, an arbitrary number of auxiliary parameters γ (0), γ (1), γ (2),… and auxiliary functions H (0)(x), H (1)(x), H (2)(x),… are introduced in the correction functi...

Descripción completa

Detalles Bibliográficos
Autores principales: Baranwal, Vipul K., Pandey, Ram K., Singh, Om P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897407/
https://www.ncbi.nlm.nih.gov/pubmed/27437484
http://dx.doi.org/10.1155/2014/847419
Descripción
Sumario:We propose optimal variational asymptotic method to solve time fractional nonlinear partial differential equations. In the proposed method, an arbitrary number of auxiliary parameters γ (0), γ (1), γ (2),… and auxiliary functions H (0)(x), H (1)(x), H (2)(x),… are introduced in the correction functional of the standard variational iteration method. The optimal values of these parameters are obtained by minimizing the square residual error. To test the method, we apply it to solve two important classes of nonlinear partial differential equations: (1) the fractional advection-diffusion equation with nonlinear source term and (2) the fractional Swift-Hohenberg equation. Only few iterations are required to achieve fairly accurate solutions of both the first and second problems.