Cargando…
Iterative Robust Capon Beamforming with Adaptively Updated Array Steering Vector Mismatch Levels
The performance of the conventional adaptive beamformer is sensitive to the array steering vector (ASV) mismatch. And the output signal-to interference and noise ratio (SINR) suffers deterioration, especially in the presence of large direction of arrival (DOA) error. To improve the robustness of tra...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897530/ https://www.ncbi.nlm.nih.gov/pubmed/27355008 http://dx.doi.org/10.1155/2014/260875 |
Sumario: | The performance of the conventional adaptive beamformer is sensitive to the array steering vector (ASV) mismatch. And the output signal-to interference and noise ratio (SINR) suffers deterioration, especially in the presence of large direction of arrival (DOA) error. To improve the robustness of traditional approach, we propose a new approach to iteratively search the ASV of the desired signal based on the robust capon beamformer (RCB) with adaptively updated uncertainty levels, which are derived in the form of quadratically constrained quadratic programming (QCQP) problem based on the subspace projection theory. The estimated levels in this iterative beamformer present the trend of decreasing. Additionally, other array imperfections also degrade the performance of beamformer in practice. To cover several kinds of mismatches together, the adaptive flat ellipsoid models are introduced in our method as tight as possible. In the simulations, our beamformer is compared with other methods and its excellent performance is demonstrated via the numerical examples. |
---|