Cargando…
Stratification-Based Outlier Detection over the Deep Web
For many applications, finding rare instances or outliers can be more interesting than finding common patterns. Existing work in outlier detection never considers the context of deep web. In this paper, we argue that, for many scenarios, it is more meaningful to detect outliers over deep web. In the...
Autores principales: | Xian, Xuefeng, Zhao, Pengpeng, Sheng, Victor S., Fang, Ligang, Gu, Caidong, Yang, Yuanfeng, Cui, Zhiming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897663/ https://www.ncbi.nlm.nih.gov/pubmed/27313603 http://dx.doi.org/10.1155/2016/7386517 |
Ejemplares similares
-
Unsupervised Outlier Detection in IOT Using Deep VAE
por: Gouda, Walaa, et al.
Publicado: (2022) -
Refining Automatically Extracted Knowledge Bases Using Crowdsourcing
por: Li, Chunhua, et al.
Publicado: (2017) -
Stacked Autoencoders for Outlier Detection in Over-the-Horizon Radar Signals
por: Protopapadakis, Eftychios, et al.
Publicado: (2017) -
Detecting Outlier Microarray Arrays by Correlation and Percentage of Outliers Spots
por: Yang, Song, et al.
Publicado: (2007) -
Outlier Vehicle Trajectory Detection Using Deep Autoencoders in Santiago, Chile
por: Peralta, Billy, et al.
Publicado: (2023)