Cargando…

Effect of salvianolic acid B on TNF-α induced cerebral microcirculatory changes in a micro-invasive mouse model

PURPOSE: To investigate the effects of salvianolic acid B (SAB) on tumor necrosis factor α (TNF-α) induced alterations of cerebral microcirculation with a bone-abrading model. METHODS: The influences of craniotomy model and bone-abrading model on cerebral microcirculation were compared. The bone-abr...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Bo, Sun, Kai, Liu, Yu-Ying, Xu, Xiang-Shun, Wang, Chuan-She, Zhao, Ke-Seng, Huang, Qiao-Bing, Han, Jing-Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897852/
https://www.ncbi.nlm.nih.gov/pubmed/27140215
http://dx.doi.org/10.1016/j.cjtee.2015.07.011
Descripción
Sumario:PURPOSE: To investigate the effects of salvianolic acid B (SAB) on tumor necrosis factor α (TNF-α) induced alterations of cerebral microcirculation with a bone-abrading model. METHODS: The influences of craniotomy model and bone-abrading model on cerebral microcirculation were compared. The bone-abrading method was used to detect the effects of intracerebroventricular application of 40 μg/kg·bw TNF-α on cerebral venular leakage of fluorescein isothiocyanate (FITC)-albulmin and the rolling and adhesion of leukocytes on venules with fluorescence tracer rhodamine 6G. The therapeutical effects of SAB on TNF-α induced microcirculatory alteration were observed, with continuous intravenous injection of 5 mg/kg·h SAB starting at 20 min before or 20 min after TNF-α administration, respectively. The expressions of CD11b/CD18 and CD62L in leukocytes were measured with flow cytometry. Immunohistochemical staining was also used to detect E-selectin and ICAM-1 expression in endothelial cells. RESULTS: Compared with craniotomy method, the bone-abrading method preserved a higher erythrocyte velocity in cerebral venules and more opening capillaries. TNF-α intervention only caused responses of vascular hyperpermeability and leukocyte rolling on venular walls, without leukocyte adhesion and other hemodynamic changes. Pre- or post-SAB treatment attenuated those responses and suppressed the enhanced expressions of CD11b/CD18 and CD62L in leukocytes and E-selectin and ICAM-1 in endothelial cells induced by TNF-α. CONCLUSIONS: The pre- and post-applications of SAB during TNF-α stimulation could suppress adhesive molecular expression and subsequently attenuate the increase of cerebral vascular permeability and leukocyte rolling.