Cargando…
Filtered selection coupled with support vector machines generate a functionally relevant prediction model for colorectal cancer
PURPOSE: There has been considerable interest in using whole-genome expression profiles for the classification of colorectal cancer (CRC). The selection of important features is a crucial step before training a classifier. METHODS: In this study, we built a model that uses support vector machine (SV...
Autores principales: | Gabere, Musa Nur, Hussein, Mohamed Aly, Aziz, Mohammad Azhar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4898422/ https://www.ncbi.nlm.nih.gov/pubmed/27330311 http://dx.doi.org/10.2147/OTT.S98910 |
Ejemplares similares
-
A Model of Exposure to Extreme Environmental Heat Uncovers the Human Transcriptome to Heat Stress
por: Bouchama, Abderrezak, et al.
Publicado: (2017) -
Classification of G-protein coupled receptors based on support vector machine with maximum relevance minimum redundancy and genetic algorithm
por: Li, Zhanchao, et al.
Publicado: (2010) -
Support vector machine classifier for prediction of the metastasis of colorectal cancer
por: Zhi, Jiajun, et al.
Publicado: (2018) -
MiRTif: a support vector machine-based microRNA target interaction filter
por: Yang, Yuchen, et al.
Publicado: (2008) -
Predicting the Coupling Specificity of G-protein Coupled Receptors to G-proteins by Support Vector Machines
por: Guan, Cui-Ping, et al.
Publicado: (2005)