Cargando…
Non-invasive detection of fasting blood glucose level via electrochemical measurement of saliva
Machine learning techniques such as logistic regression (LR), support vector machine (SVM) and artificial neural network (ANN) were used to detect fasting blood glucose levels (FBGL) in a mixed population of healthy and diseased individuals in an Indian population. The occurrence of elevated FBGL wa...
Autores principales: | Malik, Sarul, Khadgawat, Rajesh, Anand, Sneh, Gupta, Shalini |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4899397/ https://www.ncbi.nlm.nih.gov/pubmed/27350930 http://dx.doi.org/10.1186/s40064-016-2339-6 |
Ejemplares similares
-
Non-invasive platform to estimate fasting blood glucose levels from salivary electrochemical parameters
por: Malik, Sarul, et al.
Publicado: (2019) -
Changes in β-Cell Function in Offspring of Type-2 Diabetic Patients, as per Fasting and Two-Hour Plasma Glucose Levels
por: Praveen, Edavan Pulikkanath, et al.
Publicado: (2021) -
A Rapid Response Electrochemical Biosensor for Detecting Thc In Saliva
por: Stevenson, Hunter, et al.
Publicado: (2019) -
Impact of Knowledge and Practice on Fasting Blood Glucose Levels among Diabetics During Ramadan Fasting
por: Al-Hariri, Mohammed, et al.
Publicado: (2019) -
A Lab-on-a-Chip-Based Non-Invasive Optical Sensor for Measuring Glucose in Saliva
por: Jung, Dong Geon, et al.
Publicado: (2017)