Cargando…

A genetic algorithm for the arrival probability in the stochastic networks

A genetic algorithm is presented to find the arrival probability in a directed acyclic network with stochastic parameters, that gives more reliability of transmission flow in delay sensitive networks. Some sub-networks are extracted from the original network, and a connection is established between...

Descripción completa

Detalles Bibliográficos
Autores principales: Shirdel, Gholam H., Abdolhosseinzadeh, Mohsen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4899406/
https://www.ncbi.nlm.nih.gov/pubmed/27350912
http://dx.doi.org/10.1186/s40064-016-2265-7
Descripción
Sumario:A genetic algorithm is presented to find the arrival probability in a directed acyclic network with stochastic parameters, that gives more reliability of transmission flow in delay sensitive networks. Some sub-networks are extracted from the original network, and a connection is established between the original source node and the original destination node by randomly selecting some local source and the local destination nodes. The connections are sorted according to their arrival probabilities and the best established connection is determined with the maximum arrival probability. There is an established discrete time Markov chain in the network. The arrival probability to a given destination node from a given source node in the network is defined as the multi-step transition probability of the absorbtion in the final state of the established Markov chain. The proposed method is applicable on large stochastic networks, where the previous methods were not. The effectiveness of the proposed method is illustrated by some numerical results with perfect fitness values of the proposed genetic algorithm.