Cargando…
Leptospiral outer membrane protein LipL32 induces inflammation and kidney injury in zebrafish larvae
Leptospirosis is an often overlooked cause of acute kidney injury that can lead to multiple organ failure and even death. The principle protein that conserved in many pathogenic leptospires is the outer membrane protein LipL32. However, the role of LipL32 in the pathogenesis of renal injury in lepto...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4899798/ https://www.ncbi.nlm.nih.gov/pubmed/27278903 http://dx.doi.org/10.1038/srep27838 |
_version_ | 1782436534534799360 |
---|---|
author | Chang, Ming-Yang Cheng, Yi-Chuan Hsu, Shen-Hsing Ma, Tsu-Lin Chou, Li-Fang Hsu, Hsiang-Hao Tian, Ya-Chung Chen, Yung-Chang Sun, Yuh-Ju Hung, Cheng-Chieh Pan, Rong-Long Yang, Chih-Wei |
author_facet | Chang, Ming-Yang Cheng, Yi-Chuan Hsu, Shen-Hsing Ma, Tsu-Lin Chou, Li-Fang Hsu, Hsiang-Hao Tian, Ya-Chung Chen, Yung-Chang Sun, Yuh-Ju Hung, Cheng-Chieh Pan, Rong-Long Yang, Chih-Wei |
author_sort | Chang, Ming-Yang |
collection | PubMed |
description | Leptospirosis is an often overlooked cause of acute kidney injury that can lead to multiple organ failure and even death. The principle protein that conserved in many pathogenic leptospires is the outer membrane protein LipL32. However, the role of LipL32 in the pathogenesis of renal injury in leptospirosis is not entirely clear. Here we studied the effects of LipL32 on the developing kidney in zebrafish larvae. Incubation of zebrafish larvae with Leptospira santarosai serovar Shermani induced acute tubular injury predominantly in the proximal pronephric ducts. Furthermore, microinjection of lipl32 mRNA or recombinant LipL32 protein into zebrafish larvae increased macrophage accumulation and disrupted the basolateral location of NA-K-ATPase in pronephric ducts. These changes led to substantial impairment of the pronephric kidney structure. We further demonstrated that morpholino knockdown of tlr2, but not tlr4, reduced the LipL32-induced leukocyte infiltration and kidney injury. These data demonstrate that LipL32 contributes to the renal pathology in leptospirosis and gives some clues to the potential virulence of LipL32. Our results support the use of zebrafish as a model organism for studying the disease mechanism of leptospiral infection. This model might permit the future exploration of the virulence and molecular pathways of different leptospiral outer membrane proteins. |
format | Online Article Text |
id | pubmed-4899798 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-48997982016-06-13 Leptospiral outer membrane protein LipL32 induces inflammation and kidney injury in zebrafish larvae Chang, Ming-Yang Cheng, Yi-Chuan Hsu, Shen-Hsing Ma, Tsu-Lin Chou, Li-Fang Hsu, Hsiang-Hao Tian, Ya-Chung Chen, Yung-Chang Sun, Yuh-Ju Hung, Cheng-Chieh Pan, Rong-Long Yang, Chih-Wei Sci Rep Article Leptospirosis is an often overlooked cause of acute kidney injury that can lead to multiple organ failure and even death. The principle protein that conserved in many pathogenic leptospires is the outer membrane protein LipL32. However, the role of LipL32 in the pathogenesis of renal injury in leptospirosis is not entirely clear. Here we studied the effects of LipL32 on the developing kidney in zebrafish larvae. Incubation of zebrafish larvae with Leptospira santarosai serovar Shermani induced acute tubular injury predominantly in the proximal pronephric ducts. Furthermore, microinjection of lipl32 mRNA or recombinant LipL32 protein into zebrafish larvae increased macrophage accumulation and disrupted the basolateral location of NA-K-ATPase in pronephric ducts. These changes led to substantial impairment of the pronephric kidney structure. We further demonstrated that morpholino knockdown of tlr2, but not tlr4, reduced the LipL32-induced leukocyte infiltration and kidney injury. These data demonstrate that LipL32 contributes to the renal pathology in leptospirosis and gives some clues to the potential virulence of LipL32. Our results support the use of zebrafish as a model organism for studying the disease mechanism of leptospiral infection. This model might permit the future exploration of the virulence and molecular pathways of different leptospiral outer membrane proteins. Nature Publishing Group 2016-06-09 /pmc/articles/PMC4899798/ /pubmed/27278903 http://dx.doi.org/10.1038/srep27838 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Chang, Ming-Yang Cheng, Yi-Chuan Hsu, Shen-Hsing Ma, Tsu-Lin Chou, Li-Fang Hsu, Hsiang-Hao Tian, Ya-Chung Chen, Yung-Chang Sun, Yuh-Ju Hung, Cheng-Chieh Pan, Rong-Long Yang, Chih-Wei Leptospiral outer membrane protein LipL32 induces inflammation and kidney injury in zebrafish larvae |
title | Leptospiral outer membrane protein LipL32 induces inflammation and kidney injury in zebrafish larvae |
title_full | Leptospiral outer membrane protein LipL32 induces inflammation and kidney injury in zebrafish larvae |
title_fullStr | Leptospiral outer membrane protein LipL32 induces inflammation and kidney injury in zebrafish larvae |
title_full_unstemmed | Leptospiral outer membrane protein LipL32 induces inflammation and kidney injury in zebrafish larvae |
title_short | Leptospiral outer membrane protein LipL32 induces inflammation and kidney injury in zebrafish larvae |
title_sort | leptospiral outer membrane protein lipl32 induces inflammation and kidney injury in zebrafish larvae |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4899798/ https://www.ncbi.nlm.nih.gov/pubmed/27278903 http://dx.doi.org/10.1038/srep27838 |
work_keys_str_mv | AT changmingyang leptospiraloutermembraneproteinlipl32inducesinflammationandkidneyinjuryinzebrafishlarvae AT chengyichuan leptospiraloutermembraneproteinlipl32inducesinflammationandkidneyinjuryinzebrafishlarvae AT hsushenhsing leptospiraloutermembraneproteinlipl32inducesinflammationandkidneyinjuryinzebrafishlarvae AT matsulin leptospiraloutermembraneproteinlipl32inducesinflammationandkidneyinjuryinzebrafishlarvae AT choulifang leptospiraloutermembraneproteinlipl32inducesinflammationandkidneyinjuryinzebrafishlarvae AT hsuhsianghao leptospiraloutermembraneproteinlipl32inducesinflammationandkidneyinjuryinzebrafishlarvae AT tianyachung leptospiraloutermembraneproteinlipl32inducesinflammationandkidneyinjuryinzebrafishlarvae AT chenyungchang leptospiraloutermembraneproteinlipl32inducesinflammationandkidneyinjuryinzebrafishlarvae AT sunyuhju leptospiraloutermembraneproteinlipl32inducesinflammationandkidneyinjuryinzebrafishlarvae AT hungchengchieh leptospiraloutermembraneproteinlipl32inducesinflammationandkidneyinjuryinzebrafishlarvae AT panronglong leptospiraloutermembraneproteinlipl32inducesinflammationandkidneyinjuryinzebrafishlarvae AT yangchihwei leptospiraloutermembraneproteinlipl32inducesinflammationandkidneyinjuryinzebrafishlarvae |