Cargando…
Environmental Breviatea harbor mutualistic Arcobacter epibionts
Breviatea form a lineage of free living, unicellular protists, distantly related to animals and fungi1–3. This lineage emerged almost one billion years ago, when the oceanic oxygen content was low, and extant Breviatea have evolved or retained an anaerobic lifestyle4. Here we report the cultivation...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4900452/ https://www.ncbi.nlm.nih.gov/pubmed/27279223 http://dx.doi.org/10.1038/nature18297 |
_version_ | 1782436639083069440 |
---|---|
author | Hamann, Emmo Gruber-Vodicka, Harald Kleiner, Manuel Tegetmeyer, Halina E. Riedel, Dietmar Littmann, Sten Chen, Jianwei Milucka, Jana Viehweger, Bernhard Becker, Kevin W. Dong, Xiaoli Stairs, Courtney W. Hinrichs, Kai-Uwe Brown, Matthew W. Roger, Andrew J. Strous, Marc |
author_facet | Hamann, Emmo Gruber-Vodicka, Harald Kleiner, Manuel Tegetmeyer, Halina E. Riedel, Dietmar Littmann, Sten Chen, Jianwei Milucka, Jana Viehweger, Bernhard Becker, Kevin W. Dong, Xiaoli Stairs, Courtney W. Hinrichs, Kai-Uwe Brown, Matthew W. Roger, Andrew J. Strous, Marc |
author_sort | Hamann, Emmo |
collection | PubMed |
description | Breviatea form a lineage of free living, unicellular protists, distantly related to animals and fungi1–3. This lineage emerged almost one billion years ago, when the oceanic oxygen content was low, and extant Breviatea have evolved or retained an anaerobic lifestyle4. Here we report the cultivation of Lenisia limosa, gen. et sp. nov., a newly discovered breviate colonized by relatives of animal-associated Arcobacter. Physiological experiments showed that the association of L. limosa with Arcobacter was driven by the transfer of hydrogen and was mutualistic, providing benefits to both partners. With whole genome sequencing and differential proteomics we show that an experimentally observed fitness gain of L. limosa could be explained by the activity of a so far unknown type of NAD(P)H accepting hydrogenase, which was expressed in the presence, but not in the absence of Arcobacter. Differential proteomics further revealed that the presence of Lenisia stimulated expression of known “virulence” factors by Arcobacter. These proteins typically enable colonization of animal cells during infection5, but may in the present case act for mutual benefit. Finally, re-investigation of two currently available transcriptomic datasets of other Breviatea4 revealed the presence and activity of related hydrogen-consuming Arcobacter, indicating that mutualistic interaction between these two groups of microbes might be pervasive. Our results support the notion that molecular mechanisms involved in virulence can also support mutualism6 as shown here for Arcobacter and Breviatea. |
format | Online Article Text |
id | pubmed-4900452 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
record_format | MEDLINE/PubMed |
spelling | pubmed-49004522016-12-09 Environmental Breviatea harbor mutualistic Arcobacter epibionts Hamann, Emmo Gruber-Vodicka, Harald Kleiner, Manuel Tegetmeyer, Halina E. Riedel, Dietmar Littmann, Sten Chen, Jianwei Milucka, Jana Viehweger, Bernhard Becker, Kevin W. Dong, Xiaoli Stairs, Courtney W. Hinrichs, Kai-Uwe Brown, Matthew W. Roger, Andrew J. Strous, Marc Nature Article Breviatea form a lineage of free living, unicellular protists, distantly related to animals and fungi1–3. This lineage emerged almost one billion years ago, when the oceanic oxygen content was low, and extant Breviatea have evolved or retained an anaerobic lifestyle4. Here we report the cultivation of Lenisia limosa, gen. et sp. nov., a newly discovered breviate colonized by relatives of animal-associated Arcobacter. Physiological experiments showed that the association of L. limosa with Arcobacter was driven by the transfer of hydrogen and was mutualistic, providing benefits to both partners. With whole genome sequencing and differential proteomics we show that an experimentally observed fitness gain of L. limosa could be explained by the activity of a so far unknown type of NAD(P)H accepting hydrogenase, which was expressed in the presence, but not in the absence of Arcobacter. Differential proteomics further revealed that the presence of Lenisia stimulated expression of known “virulence” factors by Arcobacter. These proteins typically enable colonization of animal cells during infection5, but may in the present case act for mutual benefit. Finally, re-investigation of two currently available transcriptomic datasets of other Breviatea4 revealed the presence and activity of related hydrogen-consuming Arcobacter, indicating that mutualistic interaction between these two groups of microbes might be pervasive. Our results support the notion that molecular mechanisms involved in virulence can also support mutualism6 as shown here for Arcobacter and Breviatea. 2016-06-09 /pmc/articles/PMC4900452/ /pubmed/27279223 http://dx.doi.org/10.1038/nature18297 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Hamann, Emmo Gruber-Vodicka, Harald Kleiner, Manuel Tegetmeyer, Halina E. Riedel, Dietmar Littmann, Sten Chen, Jianwei Milucka, Jana Viehweger, Bernhard Becker, Kevin W. Dong, Xiaoli Stairs, Courtney W. Hinrichs, Kai-Uwe Brown, Matthew W. Roger, Andrew J. Strous, Marc Environmental Breviatea harbor mutualistic Arcobacter epibionts |
title | Environmental Breviatea harbor mutualistic
Arcobacter epibionts |
title_full | Environmental Breviatea harbor mutualistic
Arcobacter epibionts |
title_fullStr | Environmental Breviatea harbor mutualistic
Arcobacter epibionts |
title_full_unstemmed | Environmental Breviatea harbor mutualistic
Arcobacter epibionts |
title_short | Environmental Breviatea harbor mutualistic
Arcobacter epibionts |
title_sort | environmental breviatea harbor mutualistic
arcobacter epibionts |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4900452/ https://www.ncbi.nlm.nih.gov/pubmed/27279223 http://dx.doi.org/10.1038/nature18297 |
work_keys_str_mv | AT hamannemmo environmentalbreviateaharbormutualisticarcobacterepibionts AT grubervodickaharald environmentalbreviateaharbormutualisticarcobacterepibionts AT kleinermanuel environmentalbreviateaharbormutualisticarcobacterepibionts AT tegetmeyerhalinae environmentalbreviateaharbormutualisticarcobacterepibionts AT riedeldietmar environmentalbreviateaharbormutualisticarcobacterepibionts AT littmannsten environmentalbreviateaharbormutualisticarcobacterepibionts AT chenjianwei environmentalbreviateaharbormutualisticarcobacterepibionts AT miluckajana environmentalbreviateaharbormutualisticarcobacterepibionts AT viehwegerbernhard environmentalbreviateaharbormutualisticarcobacterepibionts AT beckerkevinw environmentalbreviateaharbormutualisticarcobacterepibionts AT dongxiaoli environmentalbreviateaharbormutualisticarcobacterepibionts AT stairscourtneyw environmentalbreviateaharbormutualisticarcobacterepibionts AT hinrichskaiuwe environmentalbreviateaharbormutualisticarcobacterepibionts AT brownmattheww environmentalbreviateaharbormutualisticarcobacterepibionts AT rogerandrewj environmentalbreviateaharbormutualisticarcobacterepibionts AT strousmarc environmentalbreviateaharbormutualisticarcobacterepibionts |