Cargando…

Nucleus accumbens functional connectivity discriminates medication-overuse headache

Medication-overuse headache (MOH) is a secondary form of headache related to the overuse of triptans, analgesics and other acute headache medications. It is believed that MOH and substance addiction share some similar pathophysiological mechanisms. In this study we examined the whole brain resting s...

Descripción completa

Detalles Bibliográficos
Autores principales: Torta, D.M., Costa, T., Luda, E., Barisone, M.G., Palmisano, P., Duca, S., Geminiani, G., Cauda, F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4900511/
https://www.ncbi.nlm.nih.gov/pubmed/27330969
http://dx.doi.org/10.1016/j.nicl.2016.05.007
Descripción
Sumario:Medication-overuse headache (MOH) is a secondary form of headache related to the overuse of triptans, analgesics and other acute headache medications. It is believed that MOH and substance addiction share some similar pathophysiological mechanisms. In this study we examined the whole brain resting state functional connectivity of the dorsal and ventral striatum in 30 patients (15 MOH and 15 non-MOH patients) to investigate if classification algorithms can successfully discriminate between MOH and non-MOH patients on the basis of the spatial pattern of resting state functional connectivity of the dorsal and ventral striatal region of interest. Our results indicated that both nucleus accumbens and dorsal rostral putamen functional connectivity could discriminate between MOH and non-MOH patients, thereby providing possible support to two interpretations. First, that MOH patients show altered reward functionality in line with drug abusers (alterations in functional connectivity of the nucleus accumbens). Second, that MOH patients show inability to break habitual behavior (alterations in functional connectivity of the dorsal striatum). In conclusion, our data showed that MOH patients were characterized by an altered functional connectivity of motivational circuits at rest. These differences could permit the blind discrimination between the two conditions using classification algorithms. Considered overall, our findings might contribute to the development of novel diagnostic measures.