Cargando…

Histidine Prevents Cu-Induced Oxidative Stress and the Associated Decreases in mRNA from Encoding Tight Junction Proteins in the Intestine of Grass Carp (Ctenopharyngodon idella)

Copper (Cu) is a common heavy metal pollutant in aquatic environments that originates from natural as well as anthropogenic sources. The present study investigated whether Cu causes oxidative damage and induces changes in the expression of genes that encode tight junction (TJ) proteins, cytokines an...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Wei-Dan, Qu, Biao, Feng, Lin, Jiang, Jun, Kuang, Sheng-Yao, Wu, Pei, Tang, Ling, Tang, Wu-Neng, Zhang, Yong-An, Zhou, Xiao-Qiu, Liu, Yang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4900568/
https://www.ncbi.nlm.nih.gov/pubmed/27280406
http://dx.doi.org/10.1371/journal.pone.0157001
_version_ 1782436659882622976
author Jiang, Wei-Dan
Qu, Biao
Feng, Lin
Jiang, Jun
Kuang, Sheng-Yao
Wu, Pei
Tang, Ling
Tang, Wu-Neng
Zhang, Yong-An
Zhou, Xiao-Qiu
Liu, Yang
author_facet Jiang, Wei-Dan
Qu, Biao
Feng, Lin
Jiang, Jun
Kuang, Sheng-Yao
Wu, Pei
Tang, Ling
Tang, Wu-Neng
Zhang, Yong-An
Zhou, Xiao-Qiu
Liu, Yang
author_sort Jiang, Wei-Dan
collection PubMed
description Copper (Cu) is a common heavy metal pollutant in aquatic environments that originates from natural as well as anthropogenic sources. The present study investigated whether Cu causes oxidative damage and induces changes in the expression of genes that encode tight junction (TJ) proteins, cytokines and antioxidant-related genes in the intestine of the grass carp (Ctenopharyngodon idella). We demonstrated that Cu decreases the survival rate of fish and increases oxidative damage as measured by increases in malondialdehyde and protein carbonyl contents. Cu exposure significantly decreased the expression of genes that encode the tight junction proteins, namely, claudin (CLDN)-c, -3 and -15 as well as occludin and zonula occludens-1, in the intestine of fish. In addition, Cu exposure increases the mRNA levels of the pro-inflammatory cytokines, specifically, IL-8, TNF-α and its related signalling factor (nuclear factor kappa B, NF-κB), which was partly correlated to the decreased mRNA levels of NF-κB inhibitor protein (IκB). These changes were associated with Cu-induced oxidative stress detected by corresponding decreases in glutathione (GSH) content, as well as decreases in the copper, zinc-superoxide dismutase (SOD1) and glutathione peroxidase (GPx) activities and mRNA levels, which were associated with the down-regulated antioxidant signalling factor NF-E2-related factor-2 (Nrf2) mRNA levels, and the Kelch-like-ECH-associated protein1 (Keap1) mRNA levels in the intestine of fish. Histidine supplementation in diets (3.7 up to 12.2 g/kg) blocked Cu-induced changes. These results indicated that Cu-induced decreases in intestinal TJ proteins and cytokine mRNA levels might be partially mediated by oxidative stress and are prevented by histidine supplementation in fish diet.
format Online
Article
Text
id pubmed-4900568
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-49005682016-06-24 Histidine Prevents Cu-Induced Oxidative Stress and the Associated Decreases in mRNA from Encoding Tight Junction Proteins in the Intestine of Grass Carp (Ctenopharyngodon idella) Jiang, Wei-Dan Qu, Biao Feng, Lin Jiang, Jun Kuang, Sheng-Yao Wu, Pei Tang, Ling Tang, Wu-Neng Zhang, Yong-An Zhou, Xiao-Qiu Liu, Yang PLoS One Research Article Copper (Cu) is a common heavy metal pollutant in aquatic environments that originates from natural as well as anthropogenic sources. The present study investigated whether Cu causes oxidative damage and induces changes in the expression of genes that encode tight junction (TJ) proteins, cytokines and antioxidant-related genes in the intestine of the grass carp (Ctenopharyngodon idella). We demonstrated that Cu decreases the survival rate of fish and increases oxidative damage as measured by increases in malondialdehyde and protein carbonyl contents. Cu exposure significantly decreased the expression of genes that encode the tight junction proteins, namely, claudin (CLDN)-c, -3 and -15 as well as occludin and zonula occludens-1, in the intestine of fish. In addition, Cu exposure increases the mRNA levels of the pro-inflammatory cytokines, specifically, IL-8, TNF-α and its related signalling factor (nuclear factor kappa B, NF-κB), which was partly correlated to the decreased mRNA levels of NF-κB inhibitor protein (IκB). These changes were associated with Cu-induced oxidative stress detected by corresponding decreases in glutathione (GSH) content, as well as decreases in the copper, zinc-superoxide dismutase (SOD1) and glutathione peroxidase (GPx) activities and mRNA levels, which were associated with the down-regulated antioxidant signalling factor NF-E2-related factor-2 (Nrf2) mRNA levels, and the Kelch-like-ECH-associated protein1 (Keap1) mRNA levels in the intestine of fish. Histidine supplementation in diets (3.7 up to 12.2 g/kg) blocked Cu-induced changes. These results indicated that Cu-induced decreases in intestinal TJ proteins and cytokine mRNA levels might be partially mediated by oxidative stress and are prevented by histidine supplementation in fish diet. Public Library of Science 2016-06-09 /pmc/articles/PMC4900568/ /pubmed/27280406 http://dx.doi.org/10.1371/journal.pone.0157001 Text en © 2016 Jiang et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Jiang, Wei-Dan
Qu, Biao
Feng, Lin
Jiang, Jun
Kuang, Sheng-Yao
Wu, Pei
Tang, Ling
Tang, Wu-Neng
Zhang, Yong-An
Zhou, Xiao-Qiu
Liu, Yang
Histidine Prevents Cu-Induced Oxidative Stress and the Associated Decreases in mRNA from Encoding Tight Junction Proteins in the Intestine of Grass Carp (Ctenopharyngodon idella)
title Histidine Prevents Cu-Induced Oxidative Stress and the Associated Decreases in mRNA from Encoding Tight Junction Proteins in the Intestine of Grass Carp (Ctenopharyngodon idella)
title_full Histidine Prevents Cu-Induced Oxidative Stress and the Associated Decreases in mRNA from Encoding Tight Junction Proteins in the Intestine of Grass Carp (Ctenopharyngodon idella)
title_fullStr Histidine Prevents Cu-Induced Oxidative Stress and the Associated Decreases in mRNA from Encoding Tight Junction Proteins in the Intestine of Grass Carp (Ctenopharyngodon idella)
title_full_unstemmed Histidine Prevents Cu-Induced Oxidative Stress and the Associated Decreases in mRNA from Encoding Tight Junction Proteins in the Intestine of Grass Carp (Ctenopharyngodon idella)
title_short Histidine Prevents Cu-Induced Oxidative Stress and the Associated Decreases in mRNA from Encoding Tight Junction Proteins in the Intestine of Grass Carp (Ctenopharyngodon idella)
title_sort histidine prevents cu-induced oxidative stress and the associated decreases in mrna from encoding tight junction proteins in the intestine of grass carp (ctenopharyngodon idella)
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4900568/
https://www.ncbi.nlm.nih.gov/pubmed/27280406
http://dx.doi.org/10.1371/journal.pone.0157001
work_keys_str_mv AT jiangweidan histidinepreventscuinducedoxidativestressandtheassociateddecreasesinmrnafromencodingtightjunctionproteinsintheintestineofgrasscarpctenopharyngodonidella
AT qubiao histidinepreventscuinducedoxidativestressandtheassociateddecreasesinmrnafromencodingtightjunctionproteinsintheintestineofgrasscarpctenopharyngodonidella
AT fenglin histidinepreventscuinducedoxidativestressandtheassociateddecreasesinmrnafromencodingtightjunctionproteinsintheintestineofgrasscarpctenopharyngodonidella
AT jiangjun histidinepreventscuinducedoxidativestressandtheassociateddecreasesinmrnafromencodingtightjunctionproteinsintheintestineofgrasscarpctenopharyngodonidella
AT kuangshengyao histidinepreventscuinducedoxidativestressandtheassociateddecreasesinmrnafromencodingtightjunctionproteinsintheintestineofgrasscarpctenopharyngodonidella
AT wupei histidinepreventscuinducedoxidativestressandtheassociateddecreasesinmrnafromencodingtightjunctionproteinsintheintestineofgrasscarpctenopharyngodonidella
AT tangling histidinepreventscuinducedoxidativestressandtheassociateddecreasesinmrnafromencodingtightjunctionproteinsintheintestineofgrasscarpctenopharyngodonidella
AT tangwuneng histidinepreventscuinducedoxidativestressandtheassociateddecreasesinmrnafromencodingtightjunctionproteinsintheintestineofgrasscarpctenopharyngodonidella
AT zhangyongan histidinepreventscuinducedoxidativestressandtheassociateddecreasesinmrnafromencodingtightjunctionproteinsintheintestineofgrasscarpctenopharyngodonidella
AT zhouxiaoqiu histidinepreventscuinducedoxidativestressandtheassociateddecreasesinmrnafromencodingtightjunctionproteinsintheintestineofgrasscarpctenopharyngodonidella
AT liuyang histidinepreventscuinducedoxidativestressandtheassociateddecreasesinmrnafromencodingtightjunctionproteinsintheintestineofgrasscarpctenopharyngodonidella