Cargando…
A predatory bivalved euarthropod from the Cambrian (Stage 3) Xiaoshiba Lagerstätte, South China
Bivalved euarthropods represent a conspicuous component of exceptionally-preserved fossil biotas throughout the Lower Palaeozoic. However, most of these taxa are known from isolated valves, and thus there is a limited understanding of their morphological organization and palaeoecology in the context...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4901283/ https://www.ncbi.nlm.nih.gov/pubmed/27283406 http://dx.doi.org/10.1038/srep27709 |
_version_ | 1782436777482518528 |
---|---|
author | Yang, Jie Ortega-Hernández, Javier Lan, Tian Hou, Jin-bo Zhang, Xi-guang |
author_facet | Yang, Jie Ortega-Hernández, Javier Lan, Tian Hou, Jin-bo Zhang, Xi-guang |
author_sort | Yang, Jie |
collection | PubMed |
description | Bivalved euarthropods represent a conspicuous component of exceptionally-preserved fossil biotas throughout the Lower Palaeozoic. However, most of these taxa are known from isolated valves, and thus there is a limited understanding of their morphological organization and palaeoecology in the context of early animal-dominated communities. The bivalved euarthropod Clypecaris serrata sp. nov., recovered from the Cambrian (Stage 3) Hongjingshao Formation in Kunming, southern China, is characterized by having a robust first pair of raptorial appendages that bear well-developed ventral-facing spines, paired dorsal spines on the trunk, and posteriorly oriented serrations on the anteroventral margins of both valves. The raptorial limbs of C. serrata were adapted for grasping prey employing a descending stroke for transporting it close the mouth, whereas the backwards-facing marginal serrations of the bivalved carapace may have helped to secure the food items during feeding. The new taxon offers novel insights on the morphology of the enigmatic genus Clypecaris, and indicates that the possession of paired dorsal spines is a diagnostic trait of the Family Clypecarididae within upper stem-group Euarthropoda. C. serrata evinces functional adaptations for an active predatory lifestyle within the context of Cambrian bivalved euarthropods, and contributes towards the better understanding of feeding diversity in early ecosystems. |
format | Online Article Text |
id | pubmed-4901283 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-49012832016-06-13 A predatory bivalved euarthropod from the Cambrian (Stage 3) Xiaoshiba Lagerstätte, South China Yang, Jie Ortega-Hernández, Javier Lan, Tian Hou, Jin-bo Zhang, Xi-guang Sci Rep Article Bivalved euarthropods represent a conspicuous component of exceptionally-preserved fossil biotas throughout the Lower Palaeozoic. However, most of these taxa are known from isolated valves, and thus there is a limited understanding of their morphological organization and palaeoecology in the context of early animal-dominated communities. The bivalved euarthropod Clypecaris serrata sp. nov., recovered from the Cambrian (Stage 3) Hongjingshao Formation in Kunming, southern China, is characterized by having a robust first pair of raptorial appendages that bear well-developed ventral-facing spines, paired dorsal spines on the trunk, and posteriorly oriented serrations on the anteroventral margins of both valves. The raptorial limbs of C. serrata were adapted for grasping prey employing a descending stroke for transporting it close the mouth, whereas the backwards-facing marginal serrations of the bivalved carapace may have helped to secure the food items during feeding. The new taxon offers novel insights on the morphology of the enigmatic genus Clypecaris, and indicates that the possession of paired dorsal spines is a diagnostic trait of the Family Clypecarididae within upper stem-group Euarthropoda. C. serrata evinces functional adaptations for an active predatory lifestyle within the context of Cambrian bivalved euarthropods, and contributes towards the better understanding of feeding diversity in early ecosystems. Nature Publishing Group 2016-06-10 /pmc/articles/PMC4901283/ /pubmed/27283406 http://dx.doi.org/10.1038/srep27709 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Yang, Jie Ortega-Hernández, Javier Lan, Tian Hou, Jin-bo Zhang, Xi-guang A predatory bivalved euarthropod from the Cambrian (Stage 3) Xiaoshiba Lagerstätte, South China |
title | A predatory bivalved euarthropod from the Cambrian (Stage 3) Xiaoshiba Lagerstätte, South China |
title_full | A predatory bivalved euarthropod from the Cambrian (Stage 3) Xiaoshiba Lagerstätte, South China |
title_fullStr | A predatory bivalved euarthropod from the Cambrian (Stage 3) Xiaoshiba Lagerstätte, South China |
title_full_unstemmed | A predatory bivalved euarthropod from the Cambrian (Stage 3) Xiaoshiba Lagerstätte, South China |
title_short | A predatory bivalved euarthropod from the Cambrian (Stage 3) Xiaoshiba Lagerstätte, South China |
title_sort | predatory bivalved euarthropod from the cambrian (stage 3) xiaoshiba lagerstätte, south china |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4901283/ https://www.ncbi.nlm.nih.gov/pubmed/27283406 http://dx.doi.org/10.1038/srep27709 |
work_keys_str_mv | AT yangjie apredatorybivalvedeuarthropodfromthecambrianstage3xiaoshibalagerstattesouthchina AT ortegahernandezjavier apredatorybivalvedeuarthropodfromthecambrianstage3xiaoshibalagerstattesouthchina AT lantian apredatorybivalvedeuarthropodfromthecambrianstage3xiaoshibalagerstattesouthchina AT houjinbo apredatorybivalvedeuarthropodfromthecambrianstage3xiaoshibalagerstattesouthchina AT zhangxiguang apredatorybivalvedeuarthropodfromthecambrianstage3xiaoshibalagerstattesouthchina AT yangjie predatorybivalvedeuarthropodfromthecambrianstage3xiaoshibalagerstattesouthchina AT ortegahernandezjavier predatorybivalvedeuarthropodfromthecambrianstage3xiaoshibalagerstattesouthchina AT lantian predatorybivalvedeuarthropodfromthecambrianstage3xiaoshibalagerstattesouthchina AT houjinbo predatorybivalvedeuarthropodfromthecambrianstage3xiaoshibalagerstattesouthchina AT zhangxiguang predatorybivalvedeuarthropodfromthecambrianstage3xiaoshibalagerstattesouthchina |