Cargando…
A seismic metamaterial: The resonant metawedge
Critical concepts from three different fields, elasticity, plasmonics and metamaterials, are brought together to design a metasurface at the geophysical scale, the resonant metawedge, to control seismic Rayleigh waves. Made of spatially graded vertical subwavelength resonators on an elastic substrat...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4901369/ https://www.ncbi.nlm.nih.gov/pubmed/27283587 http://dx.doi.org/10.1038/srep27717 |
_version_ | 1782436794520829952 |
---|---|
author | Colombi, Andrea Colquitt, Daniel Roux, Philippe Guenneau, Sebastien Craster, Richard V. |
author_facet | Colombi, Andrea Colquitt, Daniel Roux, Philippe Guenneau, Sebastien Craster, Richard V. |
author_sort | Colombi, Andrea |
collection | PubMed |
description | Critical concepts from three different fields, elasticity, plasmonics and metamaterials, are brought together to design a metasurface at the geophysical scale, the resonant metawedge, to control seismic Rayleigh waves. Made of spatially graded vertical subwavelength resonators on an elastic substrate, the metawedge can either mode convert incident surface Rayleigh waves into bulk elastic shear waves or reflect the Rayleigh waves creating a “seismic rainbow” effect analogous to the optical rainbow for electromagnetic metasurfaces. Time-domain spectral element simulations demonstrate the broadband efficacy of the metawedge in mode conversion while an analytical model is developed to accurately describe and predict the seismic rainbow effect; allowing the metawedge to be designed without the need for extensive parametric studies and simulations. The efficiency of the resonant metawedge shows that large-scale mechanical metamaterials are feasible, will have application, and that the time is ripe for considering many optical devices in the seismic and geophysical context. |
format | Online Article Text |
id | pubmed-4901369 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-49013692016-06-13 A seismic metamaterial: The resonant metawedge Colombi, Andrea Colquitt, Daniel Roux, Philippe Guenneau, Sebastien Craster, Richard V. Sci Rep Article Critical concepts from three different fields, elasticity, plasmonics and metamaterials, are brought together to design a metasurface at the geophysical scale, the resonant metawedge, to control seismic Rayleigh waves. Made of spatially graded vertical subwavelength resonators on an elastic substrate, the metawedge can either mode convert incident surface Rayleigh waves into bulk elastic shear waves or reflect the Rayleigh waves creating a “seismic rainbow” effect analogous to the optical rainbow for electromagnetic metasurfaces. Time-domain spectral element simulations demonstrate the broadband efficacy of the metawedge in mode conversion while an analytical model is developed to accurately describe and predict the seismic rainbow effect; allowing the metawedge to be designed without the need for extensive parametric studies and simulations. The efficiency of the resonant metawedge shows that large-scale mechanical metamaterials are feasible, will have application, and that the time is ripe for considering many optical devices in the seismic and geophysical context. Nature Publishing Group 2016-06-10 /pmc/articles/PMC4901369/ /pubmed/27283587 http://dx.doi.org/10.1038/srep27717 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Colombi, Andrea Colquitt, Daniel Roux, Philippe Guenneau, Sebastien Craster, Richard V. A seismic metamaterial: The resonant metawedge |
title | A seismic metamaterial: The resonant metawedge |
title_full | A seismic metamaterial: The resonant metawedge |
title_fullStr | A seismic metamaterial: The resonant metawedge |
title_full_unstemmed | A seismic metamaterial: The resonant metawedge |
title_short | A seismic metamaterial: The resonant metawedge |
title_sort | seismic metamaterial: the resonant metawedge |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4901369/ https://www.ncbi.nlm.nih.gov/pubmed/27283587 http://dx.doi.org/10.1038/srep27717 |
work_keys_str_mv | AT colombiandrea aseismicmetamaterialtheresonantmetawedge AT colquittdaniel aseismicmetamaterialtheresonantmetawedge AT rouxphilippe aseismicmetamaterialtheresonantmetawedge AT guenneausebastien aseismicmetamaterialtheresonantmetawedge AT crasterrichardv aseismicmetamaterialtheresonantmetawedge AT colombiandrea seismicmetamaterialtheresonantmetawedge AT colquittdaniel seismicmetamaterialtheresonantmetawedge AT rouxphilippe seismicmetamaterialtheresonantmetawedge AT guenneausebastien seismicmetamaterialtheresonantmetawedge AT crasterrichardv seismicmetamaterialtheresonantmetawedge |