Cargando…

A seismic metamaterial: The resonant metawedge

Critical concepts from three different fields, elasticity, plasmonics and metamaterials, are brought together to design a metasurface at the geophysical scale, the resonant metawedge, to control seismic Rayleigh waves. Made of spatially graded vertical subwavelength resonators on an elastic substrat...

Descripción completa

Detalles Bibliográficos
Autores principales: Colombi, Andrea, Colquitt, Daniel, Roux, Philippe, Guenneau, Sebastien, Craster, Richard V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4901369/
https://www.ncbi.nlm.nih.gov/pubmed/27283587
http://dx.doi.org/10.1038/srep27717
_version_ 1782436794520829952
author Colombi, Andrea
Colquitt, Daniel
Roux, Philippe
Guenneau, Sebastien
Craster, Richard V.
author_facet Colombi, Andrea
Colquitt, Daniel
Roux, Philippe
Guenneau, Sebastien
Craster, Richard V.
author_sort Colombi, Andrea
collection PubMed
description Critical concepts from three different fields, elasticity, plasmonics and metamaterials, are brought together to design a metasurface at the geophysical scale, the resonant metawedge, to control seismic Rayleigh waves. Made of spatially graded vertical subwavelength resonators on an elastic substrate, the metawedge can either mode convert incident surface Rayleigh waves into bulk elastic shear waves or reflect the Rayleigh waves creating a “seismic rainbow” effect analogous to the optical rainbow for electromagnetic metasurfaces. Time-domain spectral element simulations demonstrate the broadband efficacy of the metawedge in mode conversion while an analytical model is developed to accurately describe and predict the seismic rainbow effect; allowing the metawedge to be designed without the need for extensive parametric studies and simulations. The efficiency of the resonant metawedge shows that large-scale mechanical metamaterials are feasible, will have application, and that the time is ripe for considering many optical devices in the seismic and geophysical context.
format Online
Article
Text
id pubmed-4901369
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-49013692016-06-13 A seismic metamaterial: The resonant metawedge Colombi, Andrea Colquitt, Daniel Roux, Philippe Guenneau, Sebastien Craster, Richard V. Sci Rep Article Critical concepts from three different fields, elasticity, plasmonics and metamaterials, are brought together to design a metasurface at the geophysical scale, the resonant metawedge, to control seismic Rayleigh waves. Made of spatially graded vertical subwavelength resonators on an elastic substrate, the metawedge can either mode convert incident surface Rayleigh waves into bulk elastic shear waves or reflect the Rayleigh waves creating a “seismic rainbow” effect analogous to the optical rainbow for electromagnetic metasurfaces. Time-domain spectral element simulations demonstrate the broadband efficacy of the metawedge in mode conversion while an analytical model is developed to accurately describe and predict the seismic rainbow effect; allowing the metawedge to be designed without the need for extensive parametric studies and simulations. The efficiency of the resonant metawedge shows that large-scale mechanical metamaterials are feasible, will have application, and that the time is ripe for considering many optical devices in the seismic and geophysical context. Nature Publishing Group 2016-06-10 /pmc/articles/PMC4901369/ /pubmed/27283587 http://dx.doi.org/10.1038/srep27717 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Colombi, Andrea
Colquitt, Daniel
Roux, Philippe
Guenneau, Sebastien
Craster, Richard V.
A seismic metamaterial: The resonant metawedge
title A seismic metamaterial: The resonant metawedge
title_full A seismic metamaterial: The resonant metawedge
title_fullStr A seismic metamaterial: The resonant metawedge
title_full_unstemmed A seismic metamaterial: The resonant metawedge
title_short A seismic metamaterial: The resonant metawedge
title_sort seismic metamaterial: the resonant metawedge
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4901369/
https://www.ncbi.nlm.nih.gov/pubmed/27283587
http://dx.doi.org/10.1038/srep27717
work_keys_str_mv AT colombiandrea aseismicmetamaterialtheresonantmetawedge
AT colquittdaniel aseismicmetamaterialtheresonantmetawedge
AT rouxphilippe aseismicmetamaterialtheresonantmetawedge
AT guenneausebastien aseismicmetamaterialtheresonantmetawedge
AT crasterrichardv aseismicmetamaterialtheresonantmetawedge
AT colombiandrea seismicmetamaterialtheresonantmetawedge
AT colquittdaniel seismicmetamaterialtheresonantmetawedge
AT rouxphilippe seismicmetamaterialtheresonantmetawedge
AT guenneausebastien seismicmetamaterialtheresonantmetawedge
AT crasterrichardv seismicmetamaterialtheresonantmetawedge