Cargando…

Stimuli-responsive HBPS-g-PDMAEMA and its application as nanocarrier in loading hydrophobic molecules

The topic of stimuli-responsive nanocarriers for loading guest molecules is dynamic. It has been widely studied in applications including drug controlled release, smart sensing, catalysis, and modeling. In this paper, a graft copolymer (hyperbranched polystyrene)-g-poly[2-(dimethylamino)ethyl methac...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Yongsheng, Wang, Li, Yu, Haojie, Zain-Ul-Abdin, Sun, Ruoli, Jing, Guanghui, Tong, Rongbai, Deng, Zheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4901927/
https://www.ncbi.nlm.nih.gov/pubmed/27340484
http://dx.doi.org/10.3762/bjoc.12.92
Descripción
Sumario:The topic of stimuli-responsive nanocarriers for loading guest molecules is dynamic. It has been widely studied in applications including drug controlled release, smart sensing, catalysis, and modeling. In this paper, a graft copolymer (hyperbranched polystyrene)-g-poly[2-(dimethylamino)ethyl methacrylate] (HBPS-g-PDMAEMA) was synthesized and characterized by (1)H NMR and GPC. It was observed that the star-like HBPS-g-PDMAEMA formed aggregates in aqueous solution. The influence of polymer concentration, ionic strength and pH value on the aggregates in aqueous solution was investigated by using UV–vis spectroscopy and DLS analysis. The results showed that size of aggregates was affected by a corresponding stimulus. In addition, the loading ability of HBPS-g-PDMAEMA aggregates was investigated by using pyrene or Nile red as the model guest molecules by using UV–vis and fluorescence spectroscopy. The results showed that HBPS-g-PDMAEMA aggregates were capable to encapsulate small hydrophobic molecules. These newly prepared HBPS-g-PDMAEMA nanocarriers might be used in, e.g., medicine or catalysis.