Cargando…

The Distribution of Human Stem Cell–like Memory T Cell in Lung Cancer

Human stem cell–like memory T (Tscm) cells are long-lived, self-renewing memory lymphocytes that can differentiate into effector cells and mediate strong antitumour response in murine model. The distribution and function of Tscm cells in human lung cancer remain unknown. In this study, we investigat...

Descripción completa

Detalles Bibliográficos
Autores principales: Hong, Hai, Gu, Yong, Sheng, Si Yuan, Lu, Chuan Gang, Zou, Jian Yong, Wu, Chang You
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4902324/
https://www.ncbi.nlm.nih.gov/pubmed/27244531
http://dx.doi.org/10.1097/CJI.0000000000000128
Descripción
Sumario:Human stem cell–like memory T (Tscm) cells are long-lived, self-renewing memory lymphocytes that can differentiate into effector cells and mediate strong antitumour response in murine model. The distribution and function of Tscm cells in human lung cancer remain unknown. In this study, we investigated the properties of human Tscm cells in the blood and lymph node of non–small cell lung cancer (NSCLC) patients. There were more CD4(+) Tscm cells in blood from NSCLC patients than from healthy donors, fewer CD4(+) and CD8(+) TSCM cells in blood than in lymph node from NSCLC patients. To further analyze their properties, we stimulated peripheral blood mononuclear cells from NSCLC patients by mitogens to examine cytokine production. Our data suggest that both CD4 and CD8 Tscm cells in blood produced interferon-γ significantly increased in NSCLC patients compare with healthy subjects. In addition, fewer Tscm cells produced interferon-γ in lymph node than in blood from NSCLC patients. Our results strongly suggest that the distribution and function of CD4 Tscm cells in NSCLC patients is upregulated. Understanding of the properties of stem-like memory T cells will supply a good rationale for designing the new adoptive immunotherapy in cancer.