Cargando…

The leak channel NALCN controls tonic firing and glycolytic sensitivity of substantia nigra pars reticulata neurons

Certain neuron types fire spontaneously at high rates, an ability that is crucial for their function in brain circuits. The spontaneously active GABAergic neurons of the substantia nigra pars reticulata (SNr), a major output of the basal ganglia, provide tonic inhibition of downstream brain areas. A...

Descripción completa

Detalles Bibliográficos
Autores principales: Lutas, Andrew, Lahmann, Carolina, Soumillon, Magali, Yellen, Gary
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4902561/
https://www.ncbi.nlm.nih.gov/pubmed/27177420
http://dx.doi.org/10.7554/eLife.15271
_version_ 1782437020936699904
author Lutas, Andrew
Lahmann, Carolina
Soumillon, Magali
Yellen, Gary
author_facet Lutas, Andrew
Lahmann, Carolina
Soumillon, Magali
Yellen, Gary
author_sort Lutas, Andrew
collection PubMed
description Certain neuron types fire spontaneously at high rates, an ability that is crucial for their function in brain circuits. The spontaneously active GABAergic neurons of the substantia nigra pars reticulata (SNr), a major output of the basal ganglia, provide tonic inhibition of downstream brain areas. A depolarizing 'leak' current supports this firing pattern, but its molecular basis remains poorly understood. To understand how SNr neurons maintain tonic activity, we used single-cell RNA sequencing to determine the transcriptome of individual mouse SNr neurons. We discovered that SNr neurons express the sodium leak channel, NALCN, and that SNr neurons lacking NALCN have impaired spontaneous firing. In addition, NALCN is involved in the modulation of excitability by changes in glycolysis and by activation of muscarinic acetylcholine receptors. Our findings suggest that disruption of NALCN could impair the basal ganglia circuit, which may underlie the severe motor deficits in humans carrying mutations in NALCN. DOI: http://dx.doi.org/10.7554/eLife.15271.001
format Online
Article
Text
id pubmed-4902561
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-49025612016-06-13 The leak channel NALCN controls tonic firing and glycolytic sensitivity of substantia nigra pars reticulata neurons Lutas, Andrew Lahmann, Carolina Soumillon, Magali Yellen, Gary eLife Neuroscience Certain neuron types fire spontaneously at high rates, an ability that is crucial for their function in brain circuits. The spontaneously active GABAergic neurons of the substantia nigra pars reticulata (SNr), a major output of the basal ganglia, provide tonic inhibition of downstream brain areas. A depolarizing 'leak' current supports this firing pattern, but its molecular basis remains poorly understood. To understand how SNr neurons maintain tonic activity, we used single-cell RNA sequencing to determine the transcriptome of individual mouse SNr neurons. We discovered that SNr neurons express the sodium leak channel, NALCN, and that SNr neurons lacking NALCN have impaired spontaneous firing. In addition, NALCN is involved in the modulation of excitability by changes in glycolysis and by activation of muscarinic acetylcholine receptors. Our findings suggest that disruption of NALCN could impair the basal ganglia circuit, which may underlie the severe motor deficits in humans carrying mutations in NALCN. DOI: http://dx.doi.org/10.7554/eLife.15271.001 eLife Sciences Publications, Ltd 2016-05-13 /pmc/articles/PMC4902561/ /pubmed/27177420 http://dx.doi.org/10.7554/eLife.15271 Text en © 2016, Lutas et al http://creativecommons.org/licenses/by/4.0/ This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Neuroscience
Lutas, Andrew
Lahmann, Carolina
Soumillon, Magali
Yellen, Gary
The leak channel NALCN controls tonic firing and glycolytic sensitivity of substantia nigra pars reticulata neurons
title The leak channel NALCN controls tonic firing and glycolytic sensitivity of substantia nigra pars reticulata neurons
title_full The leak channel NALCN controls tonic firing and glycolytic sensitivity of substantia nigra pars reticulata neurons
title_fullStr The leak channel NALCN controls tonic firing and glycolytic sensitivity of substantia nigra pars reticulata neurons
title_full_unstemmed The leak channel NALCN controls tonic firing and glycolytic sensitivity of substantia nigra pars reticulata neurons
title_short The leak channel NALCN controls tonic firing and glycolytic sensitivity of substantia nigra pars reticulata neurons
title_sort leak channel nalcn controls tonic firing and glycolytic sensitivity of substantia nigra pars reticulata neurons
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4902561/
https://www.ncbi.nlm.nih.gov/pubmed/27177420
http://dx.doi.org/10.7554/eLife.15271
work_keys_str_mv AT lutasandrew theleakchannelnalcncontrolstonicfiringandglycolyticsensitivityofsubstantianigraparsreticulataneurons
AT lahmanncarolina theleakchannelnalcncontrolstonicfiringandglycolyticsensitivityofsubstantianigraparsreticulataneurons
AT soumillonmagali theleakchannelnalcncontrolstonicfiringandglycolyticsensitivityofsubstantianigraparsreticulataneurons
AT yellengary theleakchannelnalcncontrolstonicfiringandglycolyticsensitivityofsubstantianigraparsreticulataneurons
AT lutasandrew leakchannelnalcncontrolstonicfiringandglycolyticsensitivityofsubstantianigraparsreticulataneurons
AT lahmanncarolina leakchannelnalcncontrolstonicfiringandglycolyticsensitivityofsubstantianigraparsreticulataneurons
AT soumillonmagali leakchannelnalcncontrolstonicfiringandglycolyticsensitivityofsubstantianigraparsreticulataneurons
AT yellengary leakchannelnalcncontrolstonicfiringandglycolyticsensitivityofsubstantianigraparsreticulataneurons