Cargando…
Extracting a low-dimensional description of multiple gene expression datasets reveals a potential driver for tumor-associated stroma in ovarian cancer
Patterns in expression data conserved across multiple independent disease studies are likely to represent important molecular events underlying the disease. We present the INSPIRE method to infer modules of co-expressed genes and the dependencies among the modules from multiple expression datasets t...
Autores principales: | Celik, Safiye, Logsdon, Benjamin A., Battle, Stephanie, Drescher, Charles W., Rendi, Mara, Hawkins, R. David, Lee, Su-In |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4902951/ https://www.ncbi.nlm.nih.gov/pubmed/27287041 http://dx.doi.org/10.1186/s13073-016-0319-7 |
Ejemplares similares
-
Tumor-stroma relationships: Who’s the driver?
por: Wooster, Richard F.
Publicado: (2012) -
PAUSE: principled feature attribution for unsupervised gene expression analysis
por: Janizek, Joseph D., et al.
Publicado: (2023) -
Bioengineering of a tumour-stroma 3D-tumouroid co-culture model of hypopharyngeal cancer
por: Saha, Santu, et al.
Publicado: (2023) -
DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer
por: Bashashati, Ali, et al.
Publicado: (2012) -
Dimensionality reduction methods for extracting functional networks from large‐scale CRISPR screens
por: Hassan, Arshia Zernab, et al.
Publicado: (2023)