Cargando…
Classification of Motor Imagery EEG Signals with Support Vector Machines and Particle Swarm Optimization
Support vector machines are powerful tools used to solve the small sample and nonlinear classification problems, but their ultimate classification performance depends heavily upon the selection of appropriate kernel and penalty parameters. In this study, we propose using a particle swarm optimizatio...
Autores principales: | Ma, Yuliang, Ding, Xiaohui, She, Qingshan, Luo, Zhizeng, Potter, Thomas, Zhang, Yingchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4904086/ https://www.ncbi.nlm.nih.gov/pubmed/27313656 http://dx.doi.org/10.1155/2016/4941235 |
Ejemplares similares
-
Multiclass Posterior Probability Twin SVM for Motor Imagery EEG Classification
por: She, Qingshan, et al.
Publicado: (2015) -
Sparse Representation-Based Extreme Learning Machine for Motor Imagery EEG Classification
por: She, Qingshan, et al.
Publicado: (2018) -
Scale-Dependent Signal Identification in Low-Dimensional Subspace: Motor Imagery Task Classification
por: She, Qingshan, et al.
Publicado: (2016) -
Driving Fatigue Detection from EEG Using a Modified PCANet Method
por: Ma, Yuliang, et al.
Publicado: (2019) -
Cancer Classification Based on Support Vector Machine Optimized by Particle Swarm Optimization and Artificial Bee Colony
por: Gao, Lingyun, et al.
Publicado: (2017)