Cargando…

Repetitive magnetic stimulation affects the microenvironment of nerve regeneration and evoked potentials after spinal cord injury

Repetitive magnetic stimulation has been shown to alter local blood flow of the brain, excite the corticospinal tract and muscle, and induce motor function recovery. We established a rat model of acute spinal cord injury using the modified Allen's method. After 4 hours of injury, rat models rec...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Jin-lan, Guo, Xu-dong, Zhang, Shu-quan, Wang, Xin-gang, Wu, Shi-feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4904474/
https://www.ncbi.nlm.nih.gov/pubmed/27335567
http://dx.doi.org/10.4103/1673-5374.182710
Descripción
Sumario:Repetitive magnetic stimulation has been shown to alter local blood flow of the brain, excite the corticospinal tract and muscle, and induce motor function recovery. We established a rat model of acute spinal cord injury using the modified Allen's method. After 4 hours of injury, rat models received repetitive magnetic stimulation, with a stimulus intensity of 35% maximum output intensity, 5-Hz frequency, 5 seconds for each sequence, and an interval of 2 minutes. This was repeated for a total of 10 sequences, once a day, 5 days in a week, for 2 consecutive weeks. After repetitive magnetic stimulation, the number of apoptotic cells decreased, matrix metalloproteinase 9/2 gene and protein expression decreased, nestin expression increased, somatosensory and motor-evoked potentials recovered, and motor function recovered in the injured spinal cord. These findings confirm that repetitive magnetic stimulation of the spinal cord improved the microenvironment of neural regeneration, reduced neuronal apoptosis, and induced neuroprotective and repair effects on the injured spinal cord.