Cargando…
Epigenetic control of gene expression in leukemogenesis: Cooperation between wild type MLL and MLL fusion proteins
Although there has been great progress in the treatment of human cancers, especially leukemias, many remain resistant to treatment. A major current focus is the development of so-called epigenetic drugs. Epigenetic states are stable enough to persist through multiple cell divisions, but by their ver...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4905190/ https://www.ncbi.nlm.nih.gov/pubmed/27308325 http://dx.doi.org/10.1080/23723548.2014.955330 |
_version_ | 1782437226689331200 |
---|---|
author | Ballabio, Erica Milne, Thomas A |
author_facet | Ballabio, Erica Milne, Thomas A |
author_sort | Ballabio, Erica |
collection | PubMed |
description | Although there has been great progress in the treatment of human cancers, especially leukemias, many remain resistant to treatment. A major current focus is the development of so-called epigenetic drugs. Epigenetic states are stable enough to persist through multiple cell divisions, but by their very nature are reversible and thus are amenable to therapeutic manipulation. Exciting work in this area has produced a new breed of highly specific small molecules designed to inhibit epigenetic proteins, some of which have entered clinical trials. The current and future development of epigenetic drugs is greatly aided by highly detailed information about normal and aberrant epigenetic changes at the molecular level. In this review we focus on a class of aggressive acute leukemias caused by mutations in the Mixed Lineage Leukemia (MLL) gene. We provide an overview of how detailed molecular analysis of MLL leukemias has provided several early-stage epigenetic drugs and propose that further study of MLL leukemogenesis may continue to provide molecular details that potentially have a wider range of applications in human cancers. |
format | Online Article Text |
id | pubmed-4905190 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-49051902016-06-15 Epigenetic control of gene expression in leukemogenesis: Cooperation between wild type MLL and MLL fusion proteins Ballabio, Erica Milne, Thomas A Mol Cell Oncol Review Although there has been great progress in the treatment of human cancers, especially leukemias, many remain resistant to treatment. A major current focus is the development of so-called epigenetic drugs. Epigenetic states are stable enough to persist through multiple cell divisions, but by their very nature are reversible and thus are amenable to therapeutic manipulation. Exciting work in this area has produced a new breed of highly specific small molecules designed to inhibit epigenetic proteins, some of which have entered clinical trials. The current and future development of epigenetic drugs is greatly aided by highly detailed information about normal and aberrant epigenetic changes at the molecular level. In this review we focus on a class of aggressive acute leukemias caused by mutations in the Mixed Lineage Leukemia (MLL) gene. We provide an overview of how detailed molecular analysis of MLL leukemias has provided several early-stage epigenetic drugs and propose that further study of MLL leukemogenesis may continue to provide molecular details that potentially have a wider range of applications in human cancers. Taylor & Francis 2014-10-29 /pmc/articles/PMC4905190/ /pubmed/27308325 http://dx.doi.org/10.1080/23723548.2014.955330 Text en © 2014 The Author(s). Published with license by Taylor & Francis Group, LLC http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted. |
spellingShingle | Review Ballabio, Erica Milne, Thomas A Epigenetic control of gene expression in leukemogenesis: Cooperation between wild type MLL and MLL fusion proteins |
title | Epigenetic control of gene expression in leukemogenesis: Cooperation between wild type MLL and MLL fusion proteins |
title_full | Epigenetic control of gene expression in leukemogenesis: Cooperation between wild type MLL and MLL fusion proteins |
title_fullStr | Epigenetic control of gene expression in leukemogenesis: Cooperation between wild type MLL and MLL fusion proteins |
title_full_unstemmed | Epigenetic control of gene expression in leukemogenesis: Cooperation between wild type MLL and MLL fusion proteins |
title_short | Epigenetic control of gene expression in leukemogenesis: Cooperation between wild type MLL and MLL fusion proteins |
title_sort | epigenetic control of gene expression in leukemogenesis: cooperation between wild type mll and mll fusion proteins |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4905190/ https://www.ncbi.nlm.nih.gov/pubmed/27308325 http://dx.doi.org/10.1080/23723548.2014.955330 |
work_keys_str_mv | AT ballabioerica epigeneticcontrolofgeneexpressioninleukemogenesiscooperationbetweenwildtypemllandmllfusionproteins AT milnethomasa epigeneticcontrolofgeneexpressioninleukemogenesiscooperationbetweenwildtypemllandmllfusionproteins |