Cargando…
Mitochondrial death functions of p53
The p53 tumor suppressor network plays a fundamental surveillance role in both homeostatic and adaptive cell biology. p53 is one of the most important barriers against malignant derailment of normal cells, orchestrating growth arrest, senescence, or cell death by linking many different pathways in r...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4905191/ https://www.ncbi.nlm.nih.gov/pubmed/27308326 http://dx.doi.org/10.1080/23723548.2014.955995 |
_version_ | 1782437226912677888 |
---|---|
author | Marchenko, N D Moll, U M |
author_facet | Marchenko, N D Moll, U M |
author_sort | Marchenko, N D |
collection | PubMed |
description | The p53 tumor suppressor network plays a fundamental surveillance role in both homeostatic and adaptive cell biology. p53 is one of the most important barriers against malignant derailment of normal cells, orchestrating growth arrest, senescence, or cell death by linking many different pathways in response to genotoxic and non-genotoxic insults. p53 is the key broadband sensor for numerous cellular stresses such as DNA damage, hypoxia, oxidative stress, oncogenic signaling, and nucleolar stress. The crucial tumor suppressive and tissue homeostasis activity of p53 is its ability to activate cell death via multiple different pathways. A well-characterized biochemical function of p53 in the regulation of apoptosis is its role as a potent transcriptional regulator. p53 activates a panel of proapoptotic genes from the mitochondrial apoptotic and death receptor programs while repressing antiapoptotic Bcl2 family genes. In addition, over the last 10 y a growing body of evidence has also defined direct extranuclear non-transcriptional p53 activities within mitochondria-mediated cell death pathways that are based on p53 protein accumulation in cytosolic and mitochondrial compartments and protein-protein interactions. To date, transcription-independent p53-mediated cell death regulation has been described for apoptosis, necrosis, and autophagy. Because mitochondrial dysregulation is central to the development of a number of pathologic processes such as cancer and neurodegenerative and age-related diseases, understanding the direct roles of p53 protein in mitochondria has high translational impact and could facilitate the development of novel drug targets to combat these diseases. In this review we will mainly focus on mechanisms of p53-mediated transcription-independent cell death pathways at mitochondria. |
format | Online Article Text |
id | pubmed-4905191 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-49051912016-06-15 Mitochondrial death functions of p53 Marchenko, N D Moll, U M Mol Cell Oncol Review The p53 tumor suppressor network plays a fundamental surveillance role in both homeostatic and adaptive cell biology. p53 is one of the most important barriers against malignant derailment of normal cells, orchestrating growth arrest, senescence, or cell death by linking many different pathways in response to genotoxic and non-genotoxic insults. p53 is the key broadband sensor for numerous cellular stresses such as DNA damage, hypoxia, oxidative stress, oncogenic signaling, and nucleolar stress. The crucial tumor suppressive and tissue homeostasis activity of p53 is its ability to activate cell death via multiple different pathways. A well-characterized biochemical function of p53 in the regulation of apoptosis is its role as a potent transcriptional regulator. p53 activates a panel of proapoptotic genes from the mitochondrial apoptotic and death receptor programs while repressing antiapoptotic Bcl2 family genes. In addition, over the last 10 y a growing body of evidence has also defined direct extranuclear non-transcriptional p53 activities within mitochondria-mediated cell death pathways that are based on p53 protein accumulation in cytosolic and mitochondrial compartments and protein-protein interactions. To date, transcription-independent p53-mediated cell death regulation has been described for apoptosis, necrosis, and autophagy. Because mitochondrial dysregulation is central to the development of a number of pathologic processes such as cancer and neurodegenerative and age-related diseases, understanding the direct roles of p53 protein in mitochondria has high translational impact and could facilitate the development of novel drug targets to combat these diseases. In this review we will mainly focus on mechanisms of p53-mediated transcription-independent cell death pathways at mitochondria. Taylor & Francis 2014-10-31 /pmc/articles/PMC4905191/ /pubmed/27308326 http://dx.doi.org/10.1080/23723548.2014.955995 Text en © 2014 The Author(s). Published with license by Taylor & Francis Group, LLC http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted. |
spellingShingle | Review Marchenko, N D Moll, U M Mitochondrial death functions of p53 |
title | Mitochondrial death functions of p53 |
title_full | Mitochondrial death functions of p53 |
title_fullStr | Mitochondrial death functions of p53 |
title_full_unstemmed | Mitochondrial death functions of p53 |
title_short | Mitochondrial death functions of p53 |
title_sort | mitochondrial death functions of p53 |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4905191/ https://www.ncbi.nlm.nih.gov/pubmed/27308326 http://dx.doi.org/10.1080/23723548.2014.955995 |
work_keys_str_mv | AT marchenkond mitochondrialdeathfunctionsofp53 AT mollum mitochondrialdeathfunctionsofp53 |