Cargando…

Identification of long non-coding RNAs as novel biomarker and potential therapeutic target for atrial fibrillation in old adults

Atrial fibrillation (AF) is a highly prevalent cardiac arrhythmia disease, which widely leads to exacerbate heart failure and ischemic stroke in elder world. Recently, long non-coding RNAs (lncRNAs), a subclass of noncoding RNAs, have been reported to play critical roles in pathophysiology of cardia...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Yingjia, Huang, Ritai, Gu, Jianing, Jiang, Weifeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4905440/
https://www.ncbi.nlm.nih.gov/pubmed/26908457
http://dx.doi.org/10.18632/oncotarget.7514
Descripción
Sumario:Atrial fibrillation (AF) is a highly prevalent cardiac arrhythmia disease, which widely leads to exacerbate heart failure and ischemic stroke in elder world. Recently, long non-coding RNAs (lncRNAs), a subclass of noncoding RNAs, have been reported to play critical roles in pathophysiology of cardiac heart. However, little is known of their role in cardiac arrhythmia. In the present study, we investigated the expression levels of lncRNAs of AF patients and healthy people with Agilent Human lncRNA array for the first time. 177 lncRNAs of 78243 and 153 mRNAs of 30215 tested were identified to be differentially expressed (≥ 2-fold change), indicating that the expression of many lncRNAs are upregulated or downregulated in AF. Among these, NONHSAT040387 and NONHSAT098586 were the most upregulated and downregulated lncRNAs. Real time quantitative PCR were employed to validate the microarray analysis findings, and the results confirmed the consistence. GO and KEGG pathway analysis were applied to explore the potential lncRNAs functions, some pathways including oxygen transporter activity and protein heterodimerization activity were speculated to be involved in AF pathogenesis. These results shed some light on lncRNAs' physiologic functions and provide useful information for exploring potential therapeutic treatments for heart rhythm disease.