Cargando…

Supramolecular assemblies underpin turnover of outer membrane proteins in bacteria

Gram-negative bacteria inhabit a broad range of ecological niches. For Escherichia coli, this includes river water as well as humans and animals where it can be both a commensal and a pathogen1–3. Intricate regulatory mechanisms ensure bacteria have the right complement of β-barrel outer membrane pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Rassam, Patrice, Copeland, Nikki A., Birkholz, Oliver, Tóth, Csaba, Chavent, Matthieu, Duncan, Anna L., Cross, Stephen J., Housden, Nicholas G., Kaminska, Renata, Seger, Urban, Quinn, Diana M., Garrod, Tamsin J., Sansom, Mark S.P., Piehler, Jacob, Baumann, Christoph G., Kleanthous, Colin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4905513/
https://www.ncbi.nlm.nih.gov/pubmed/26061769
http://dx.doi.org/10.1038/nature14461
_version_ 1782437276304801792
author Rassam, Patrice
Copeland, Nikki A.
Birkholz, Oliver
Tóth, Csaba
Chavent, Matthieu
Duncan, Anna L.
Cross, Stephen J.
Housden, Nicholas G.
Kaminska, Renata
Seger, Urban
Quinn, Diana M.
Garrod, Tamsin J.
Sansom, Mark S.P.
Piehler, Jacob
Baumann, Christoph G.
Kleanthous, Colin
author_facet Rassam, Patrice
Copeland, Nikki A.
Birkholz, Oliver
Tóth, Csaba
Chavent, Matthieu
Duncan, Anna L.
Cross, Stephen J.
Housden, Nicholas G.
Kaminska, Renata
Seger, Urban
Quinn, Diana M.
Garrod, Tamsin J.
Sansom, Mark S.P.
Piehler, Jacob
Baumann, Christoph G.
Kleanthous, Colin
author_sort Rassam, Patrice
collection PubMed
description Gram-negative bacteria inhabit a broad range of ecological niches. For Escherichia coli, this includes river water as well as humans and animals where it can be both a commensal and a pathogen1–3. Intricate regulatory mechanisms ensure bacteria have the right complement of β-barrel outer membrane proteins (OMPs) to enable adaptation to a particular habitat4,5. Yet no mechanism is known for replacing OMPs in the outer membrane (OM), a biological enigma further confounded by the lack of an energy source and the high stability6 and abundance of OMPs5. Here, we uncover the process underpinning OMP turnover in E. coli and show it to be passive and binary in nature wherein old OMPs are displaced to the poles of growing cells as new OMPs take their place. Using fluorescent colicins as OMP-specific probes, in combination with ensemble and single-molecule fluorescence microscopy in vivo and in vitro, as well as molecular dynamics (MD) simulations, we established the mechanism for binary OMP partitioning. OMPs clustered to form islands of ~0.5 μm diameter where their diffusion was restricted by promiscuous interactions with other OMPs. OMP islands were distributed throughout the cell and contained the Bam complex, which catalyses the insertion of OMPs in the OM7,8. However, OMP biogenesis occurred as a gradient that was highest at mid-cell but largely absent at cell poles. The cumulative effect is to push old OMP islands towards the poles of growing cells, leading to a binary distribution when cells divide. Hence the OM of a Gram-negative bacterium is a spatially and temporally organised structure and this organisation lies at the heart of how OMPs are turned over in the membrane.
format Online
Article
Text
id pubmed-4905513
institution National Center for Biotechnology Information
language English
publishDate 2015
record_format MEDLINE/PubMed
spelling pubmed-49055132016-06-13 Supramolecular assemblies underpin turnover of outer membrane proteins in bacteria Rassam, Patrice Copeland, Nikki A. Birkholz, Oliver Tóth, Csaba Chavent, Matthieu Duncan, Anna L. Cross, Stephen J. Housden, Nicholas G. Kaminska, Renata Seger, Urban Quinn, Diana M. Garrod, Tamsin J. Sansom, Mark S.P. Piehler, Jacob Baumann, Christoph G. Kleanthous, Colin Nature Article Gram-negative bacteria inhabit a broad range of ecological niches. For Escherichia coli, this includes river water as well as humans and animals where it can be both a commensal and a pathogen1–3. Intricate regulatory mechanisms ensure bacteria have the right complement of β-barrel outer membrane proteins (OMPs) to enable adaptation to a particular habitat4,5. Yet no mechanism is known for replacing OMPs in the outer membrane (OM), a biological enigma further confounded by the lack of an energy source and the high stability6 and abundance of OMPs5. Here, we uncover the process underpinning OMP turnover in E. coli and show it to be passive and binary in nature wherein old OMPs are displaced to the poles of growing cells as new OMPs take their place. Using fluorescent colicins as OMP-specific probes, in combination with ensemble and single-molecule fluorescence microscopy in vivo and in vitro, as well as molecular dynamics (MD) simulations, we established the mechanism for binary OMP partitioning. OMPs clustered to form islands of ~0.5 μm diameter where their diffusion was restricted by promiscuous interactions with other OMPs. OMP islands were distributed throughout the cell and contained the Bam complex, which catalyses the insertion of OMPs in the OM7,8. However, OMP biogenesis occurred as a gradient that was highest at mid-cell but largely absent at cell poles. The cumulative effect is to push old OMP islands towards the poles of growing cells, leading to a binary distribution when cells divide. Hence the OM of a Gram-negative bacterium is a spatially and temporally organised structure and this organisation lies at the heart of how OMPs are turned over in the membrane. 2015-06-10 2015-07-16 /pmc/articles/PMC4905513/ /pubmed/26061769 http://dx.doi.org/10.1038/nature14461 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Rassam, Patrice
Copeland, Nikki A.
Birkholz, Oliver
Tóth, Csaba
Chavent, Matthieu
Duncan, Anna L.
Cross, Stephen J.
Housden, Nicholas G.
Kaminska, Renata
Seger, Urban
Quinn, Diana M.
Garrod, Tamsin J.
Sansom, Mark S.P.
Piehler, Jacob
Baumann, Christoph G.
Kleanthous, Colin
Supramolecular assemblies underpin turnover of outer membrane proteins in bacteria
title Supramolecular assemblies underpin turnover of outer membrane proteins in bacteria
title_full Supramolecular assemblies underpin turnover of outer membrane proteins in bacteria
title_fullStr Supramolecular assemblies underpin turnover of outer membrane proteins in bacteria
title_full_unstemmed Supramolecular assemblies underpin turnover of outer membrane proteins in bacteria
title_short Supramolecular assemblies underpin turnover of outer membrane proteins in bacteria
title_sort supramolecular assemblies underpin turnover of outer membrane proteins in bacteria
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4905513/
https://www.ncbi.nlm.nih.gov/pubmed/26061769
http://dx.doi.org/10.1038/nature14461
work_keys_str_mv AT rassampatrice supramolecularassembliesunderpinturnoverofoutermembraneproteinsinbacteria
AT copelandnikkia supramolecularassembliesunderpinturnoverofoutermembraneproteinsinbacteria
AT birkholzoliver supramolecularassembliesunderpinturnoverofoutermembraneproteinsinbacteria
AT tothcsaba supramolecularassembliesunderpinturnoverofoutermembraneproteinsinbacteria
AT chaventmatthieu supramolecularassembliesunderpinturnoverofoutermembraneproteinsinbacteria
AT duncanannal supramolecularassembliesunderpinturnoverofoutermembraneproteinsinbacteria
AT crossstephenj supramolecularassembliesunderpinturnoverofoutermembraneproteinsinbacteria
AT housdennicholasg supramolecularassembliesunderpinturnoverofoutermembraneproteinsinbacteria
AT kaminskarenata supramolecularassembliesunderpinturnoverofoutermembraneproteinsinbacteria
AT segerurban supramolecularassembliesunderpinturnoverofoutermembraneproteinsinbacteria
AT quinndianam supramolecularassembliesunderpinturnoverofoutermembraneproteinsinbacteria
AT garrodtamsinj supramolecularassembliesunderpinturnoverofoutermembraneproteinsinbacteria
AT sansommarksp supramolecularassembliesunderpinturnoverofoutermembraneproteinsinbacteria
AT piehlerjacob supramolecularassembliesunderpinturnoverofoutermembraneproteinsinbacteria
AT baumannchristophg supramolecularassembliesunderpinturnoverofoutermembraneproteinsinbacteria
AT kleanthouscolin supramolecularassembliesunderpinturnoverofoutermembraneproteinsinbacteria