Cargando…
Learning mixed graphical models with separate sparsity parameters and stability-based model selection
BACKGROUND: Mixed graphical models (MGMs) are graphical models learned over a combination of continuous and discrete variables. Mixed variable types are common in biomedical datasets. MGMs consist of a parameterized joint probability density, which implies a network structure over these heterogeneou...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4905606/ https://www.ncbi.nlm.nih.gov/pubmed/27294886 http://dx.doi.org/10.1186/s12859-016-1039-0 |