Cargando…
Learning mixed graphical models with separate sparsity parameters and stability-based model selection
BACKGROUND: Mixed graphical models (MGMs) are graphical models learned over a combination of continuous and discrete variables. Mixed variable types are common in biomedical datasets. MGMs consist of a parameterized joint probability density, which implies a network structure over these heterogeneou...
Autores principales: | Sedgewick, Andrew J., Shi, Ivy, Donovan, Rory M., Benos, Panayiotis V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4905606/ https://www.ncbi.nlm.nih.gov/pubmed/27294886 http://dx.doi.org/10.1186/s12859-016-1039-0 |
Ejemplares similares
-
Sparsity Is Better with Stability: Combining Accuracy and Stability for Model Selection in Brain Decoding
por: Baldassarre, Luca, et al.
Publicado: (2017) -
On the Sparsity of XORs in Approximate Model Counting
por: Agrawal, Durgesh, et al.
Publicado: (2020) -
Statistical learning with sparsity: the lasso and generalizations
por: Hastie, Trevor, et al.
Publicado: (2015) -
On the sparsity of fitness functions and implications for learning
por: Brookes, David H., et al.
Publicado: (2021) -
Hybrid Sparsity Model for Fast Terahertz Imaging
por: Ren, Xiaozhen, et al.
Publicado: (2021)