Cargando…
Integration of multi-omics data for prediction of phenotypic traits using random forest
BACKGROUND: In order to find genetic and metabolic pathways related to phenotypic traits of interest, we analyzed gene expression data, metabolite data obtained with GC-MS and LC-MS, proteomics data and a selected set of tuber quality phenotypic data from a diploid segregating mapping population of...
Autores principales: | Acharjee, Animesh, Kloosterman, Bjorn, Visser, Richard G. F., Maliepaard, Chris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4905610/ https://www.ncbi.nlm.nih.gov/pubmed/27295212 http://dx.doi.org/10.1186/s12859-016-1043-4 |
Ejemplares similares
-
Genetical genomics of quality related traits in potato tubers using proteomics
por: Acharjee, Animesh, et al.
Publicado: (2018) -
Editorial: Integrative multi-modal, multi-omics analytics for the better understanding of metabolic diseases
por: Acharjee, Animesh, et al.
Publicado: (2023) -
Cloud Computing Enabled Big Multi-Omics Data
Analytics
por: Koppad, Saraswati, et al.
Publicado: (2021) -
Integration of multi-omics data and deep phenotyping enables prediction of cytokine responses
por: Bakker, Olivier B., et al.
Publicado: (2018) -
Block Forests: random forests for blocks of clinical and omics covariate data
por: Hornung, Roman, et al.
Publicado: (2019)