Cargando…
Inferring differentially expressed pathways using kernel maximum mean discrepancy-based test
BACKGROUND: Pathway expression is multivariate in nature. Thus, from a statistical perspective, to detect differentially expressed pathways between two conditions, methods for inferring differences between mean vectors need to be applied. Maximum mean discrepancy (MMD) is a statistical test to deter...
Autores principales: | Vegas, Esteban, Oller, Josep M., Reverter, Ferran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4905616/ https://www.ncbi.nlm.nih.gov/pubmed/27294256 http://dx.doi.org/10.1186/s12859-016-1046-1 |
Ejemplares similares
-
Kernel-PCA data integration with enhanced interpretability
por: Reverter, Ferran, et al.
Publicado: (2014) -
SVM-RFE: selection and visualization of the most relevant features through non-linear kernels
por: Sanz, Hector, et al.
Publicado: (2018) -
Mining Gene Expression Profiles: An Integrated Implementation of Kernel Principal Component Analysis and Singular Value Decomposition
por: Reverter, Ferran, et al.
Publicado: (2010) -
Identification of lung cancer gene markers through kernel maximum mean discrepancy and information entropy
por: Zhao, Zhixun, et al.
Publicado: (2019) -
Complex Network Construction of Univariate Chaotic Time Series Based on Maximum Mean Discrepancy
por: Sun, Jiancheng
Publicado: (2020)