Cargando…
Separating common from distinctive variation
BACKGROUND: Joint and individual variation explained (JIVE), distinct and common simultaneous component analysis (DISCO) and O2-PLS, a two-block (X-Y) latent variable regression method with an integral OSC filter can all be used for the integrated analysis of multiple data sets and decompose them in...
Autores principales: | van der Kloet, Frans M., Sebastián-León, Patricia, Conesa, Ana, Smilde, Age K., Westerhuis, Johan A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4905617/ https://www.ncbi.nlm.nih.gov/pubmed/27294690 http://dx.doi.org/10.1186/s12859-016-1037-2 |
Ejemplares similares
-
Common and distinct variation in data fusion of designed experimental data
por: Alinaghi, Masoumeh, et al.
Publicado: (2019) -
Increased comparability between RNA-Seq and microarray data by utilization of gene sets
por: van der Kloet, Frans M., et al.
Publicado: (2020) -
Statistical validation of megavariate effects in ASCA
por: Vis, Daniel J, et al.
Publicado: (2007) -
Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies
por: Szymańska, Ewa, et al.
Publicado: (2011) -
Use of prior knowledge for the analysis of high-throughput transcriptomics and metabolomics data
por: Reshetova, Polina, et al.
Publicado: (2014)