Cargando…
A Nonlinear Causality Estimator Based on Non-Parametric Multiplicative Regression
Causal prediction has become a popular tool for neuroscience applications, as it allows the study of relationships between different brain areas during rest, cognitive tasks or brain disorders. We propose a nonparametric approach for the estimation of nonlinear causal prediction for multivariate tim...
Autores principales: | Nicolaou, Nicoletta, Constandinou, Timothy G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4905976/ https://www.ncbi.nlm.nih.gov/pubmed/27378901 http://dx.doi.org/10.3389/fninf.2016.00019 |
Ejemplares similares
-
Computationally efficient modeling of proprioceptive signals in the upper limb for prostheses: a simulation study
por: Williams, Ian, et al.
Publicado: (2014) -
Brain and brain-heart Granger causality during wakefulness and sleep
por: Abdalbari, Helmi, et al.
Publicado: (2022) -
Estimating nonlinear regression errors without doing regression
por: Pi, H, et al.
Publicado: (1994) -
HFAC Dose Repetition and Accumulation Leads to Progressively Longer Block Carryover Effect in Rat Sciatic Nerve
por: Rapeaux, Adrien, et al.
Publicado: (2022) -
Parametric estimation of cross-frequency coupling
por: van Wijk, B.C.M., et al.
Publicado: (2015)