Cargando…
Cecropin B Represses CYP3A29 Expression through Activation of the TLR2/4-NF-κB/PXR Signaling Pathway
Cecropins are peptide antibiotics used as drugs and feed additives. Cecropin B can inhibit the expression of CYP3A29, but the underlying mechanisms remain unclear. The present study was designed to determine the mechanisms responsible for the effects of cecropin B on CYP3A29 expression, focusing on...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906279/ https://www.ncbi.nlm.nih.gov/pubmed/27296244 http://dx.doi.org/10.1038/srep27876 |
Sumario: | Cecropins are peptide antibiotics used as drugs and feed additives. Cecropin B can inhibit the expression of CYP3A29, but the underlying mechanisms remain unclear. The present study was designed to determine the mechanisms responsible for the effects of cecropin B on CYP3A29 expression, focusing on the Toll-like receptors (TLRs) and NF-κB pathways. Our results indicated that the CYP3A29 expression was inhibited by cecropin B, which was regulated by pregnane X receptor (PXR) in a time- and dose-dependent manner. Cecropin B-induced NF-κB activation played a pivotal role in the suppression of CYP3A29 through disrupting the association of the PXR/retinoid X receptor alpha (RXR-α) complex with DNA sequences. NF-κB p65 directly interacted with the DNA-binding domain of PXR, suppressed its expression, and inhibited its transactivation, leading to the downregulation of the PXR-regulated CYP3A29 expression. Furthermore, cecropin B activated pig liver cells by interacting with TLRs 2 and 4, which modulated NF-κB-mediated signaling pathways. In conclusion, cecropin B inhibited the expression of CYP3A29 in a TLR/NF-κB/PXR-dependent manner, which should be considered in future development of cecropins and other antimicrobial peptides. |
---|