Cargando…

DELLA-mediated PIF degradation contributes to coordination of light and gibberellin signalling in Arabidopsis

Light and gibberellins (GAs) antagonistically regulate hypocotyl elongation in plants. It has been demonstrated that DELLAs, which are negative regulators of GA signalling, inhibit phytochrome-interacting factors 3 and 4 (PIF3 and PIF4) by sequestering their DNA-recognition domains. However, it is u...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Kunlun, Yu, Renbo, Fan, Liu-Min, Wei, Ning, Chen, Haodong, Deng, Xing Wang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906400/
https://www.ncbi.nlm.nih.gov/pubmed/27282989
http://dx.doi.org/10.1038/ncomms11868
Descripción
Sumario:Light and gibberellins (GAs) antagonistically regulate hypocotyl elongation in plants. It has been demonstrated that DELLAs, which are negative regulators of GA signalling, inhibit phytochrome-interacting factors 3 and 4 (PIF3 and PIF4) by sequestering their DNA-recognition domains. However, it is unclear whether there are other mechanisms of regulatory crosstalk between DELLAs and PIFs. Here, we demonstrate that DELLAs negatively regulate the abundance of four PIF proteins through the ubiquitin–proteasome system. Reduction of PIF3 protein abundance by DELLAs correlates closely with reduced hypocotyl elongation. Both sequestration and degradation of PIF3 by DELLAs contribute to a reduction in PIF3 binding to its target genes. Thus, we show that promotion of PIF degradation by DELLAs is required to coordinate light and GA signals, and the dual regulation of transcription factors by DELLAs by both sequestration and degradation may be a general mechanism.