Cargando…
Gold Nanoparticles Decorated with Sialic Acid Terminated Bi‐antennary N‐Glycans for the Detection of Influenza Virus at Nanomolar Concentrations
Gold nanoparticles decorated with full‐length sialic acid terminated complex bi‐antennary N‐glycans, synthesized with glycans isolated from egg yolk, were used as a sensor for the detection of both recombinant hemagglutinin (HA) and whole influenza A virus particles of the H1N1 subtype. Nanoparticle...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906500/ https://www.ncbi.nlm.nih.gov/pubmed/27308196 http://dx.doi.org/10.1002/open.201500109 |
_version_ | 1782437425741561856 |
---|---|
author | Poonthiyil, Vivek Nagesh, Prashanth T. Husain, Matloob Golovko, Vladimir B. Fairbanks, Antony J. |
author_facet | Poonthiyil, Vivek Nagesh, Prashanth T. Husain, Matloob Golovko, Vladimir B. Fairbanks, Antony J. |
author_sort | Poonthiyil, Vivek |
collection | PubMed |
description | Gold nanoparticles decorated with full‐length sialic acid terminated complex bi‐antennary N‐glycans, synthesized with glycans isolated from egg yolk, were used as a sensor for the detection of both recombinant hemagglutinin (HA) and whole influenza A virus particles of the H1N1 subtype. Nanoparticle aggregation was induced by interaction between the sialic acid termini of the glycans attached to gold and the multivalent sialic acid binding sites of HA. Both dynamic light scattering (DLS) and UV/Vis spectroscopy demonstrated the efficiency of the sensor, which could detect viral HA at nanomolar concentrations and revealed a linear relationship between the extent of nanoparticle aggregation and the concentration of HA. UV/Vis studies also showed that these nanoparticles can selectively detect an influenza A virus strain that preferentially binds sialic acid terminated glycans with α(2→6) linkages over a strain that prefers glycans with terminal α(2→3)‐linked sialic acids. |
format | Online Article Text |
id | pubmed-4906500 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-49065002016-06-15 Gold Nanoparticles Decorated with Sialic Acid Terminated Bi‐antennary N‐Glycans for the Detection of Influenza Virus at Nanomolar Concentrations Poonthiyil, Vivek Nagesh, Prashanth T. Husain, Matloob Golovko, Vladimir B. Fairbanks, Antony J. ChemistryOpen Full Papers Gold nanoparticles decorated with full‐length sialic acid terminated complex bi‐antennary N‐glycans, synthesized with glycans isolated from egg yolk, were used as a sensor for the detection of both recombinant hemagglutinin (HA) and whole influenza A virus particles of the H1N1 subtype. Nanoparticle aggregation was induced by interaction between the sialic acid termini of the glycans attached to gold and the multivalent sialic acid binding sites of HA. Both dynamic light scattering (DLS) and UV/Vis spectroscopy demonstrated the efficiency of the sensor, which could detect viral HA at nanomolar concentrations and revealed a linear relationship between the extent of nanoparticle aggregation and the concentration of HA. UV/Vis studies also showed that these nanoparticles can selectively detect an influenza A virus strain that preferentially binds sialic acid terminated glycans with α(2→6) linkages over a strain that prefers glycans with terminal α(2→3)‐linked sialic acids. John Wiley and Sons Inc. 2015-07-14 /pmc/articles/PMC4906500/ /pubmed/27308196 http://dx.doi.org/10.1002/open.201500109 Text en © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs (http://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Full Papers Poonthiyil, Vivek Nagesh, Prashanth T. Husain, Matloob Golovko, Vladimir B. Fairbanks, Antony J. Gold Nanoparticles Decorated with Sialic Acid Terminated Bi‐antennary N‐Glycans for the Detection of Influenza Virus at Nanomolar Concentrations |
title | Gold Nanoparticles Decorated with Sialic Acid Terminated Bi‐antennary N‐Glycans for the Detection of Influenza Virus at Nanomolar Concentrations
|
title_full | Gold Nanoparticles Decorated with Sialic Acid Terminated Bi‐antennary N‐Glycans for the Detection of Influenza Virus at Nanomolar Concentrations
|
title_fullStr | Gold Nanoparticles Decorated with Sialic Acid Terminated Bi‐antennary N‐Glycans for the Detection of Influenza Virus at Nanomolar Concentrations
|
title_full_unstemmed | Gold Nanoparticles Decorated with Sialic Acid Terminated Bi‐antennary N‐Glycans for the Detection of Influenza Virus at Nanomolar Concentrations
|
title_short | Gold Nanoparticles Decorated with Sialic Acid Terminated Bi‐antennary N‐Glycans for the Detection of Influenza Virus at Nanomolar Concentrations
|
title_sort | gold nanoparticles decorated with sialic acid terminated bi‐antennary n‐glycans for the detection of influenza virus at nanomolar concentrations |
topic | Full Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906500/ https://www.ncbi.nlm.nih.gov/pubmed/27308196 http://dx.doi.org/10.1002/open.201500109 |
work_keys_str_mv | AT poonthiyilvivek goldnanoparticlesdecoratedwithsialicacidterminatedbiantennarynglycansforthedetectionofinfluenzavirusatnanomolarconcentrations AT nageshprashantht goldnanoparticlesdecoratedwithsialicacidterminatedbiantennarynglycansforthedetectionofinfluenzavirusatnanomolarconcentrations AT husainmatloob goldnanoparticlesdecoratedwithsialicacidterminatedbiantennarynglycansforthedetectionofinfluenzavirusatnanomolarconcentrations AT golovkovladimirb goldnanoparticlesdecoratedwithsialicacidterminatedbiantennarynglycansforthedetectionofinfluenzavirusatnanomolarconcentrations AT fairbanksantonyj goldnanoparticlesdecoratedwithsialicacidterminatedbiantennarynglycansforthedetectionofinfluenzavirusatnanomolarconcentrations |