Cargando…
On causality of extreme events
Multiple metrics have been developed to detect causality relations between data describing the elements constituting complex systems, all of them considering their evolution through time. Here we propose a metric able to detect causality within static data sets, by analysing how extreme events in on...
Autor principal: | Zanin, Massimiliano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906649/ https://www.ncbi.nlm.nih.gov/pubmed/27330866 http://dx.doi.org/10.7717/peerj.2111 |
Ejemplares similares
-
causalizeR: a text mining algorithm to identify causal relationships in scientific literature
por: Ancin-Murguzur, Francisco J., et al.
Publicado: (2021) -
DISNET: a framework for extracting phenotypic disease information from public sources
por: Lagunes-García, Gerardo, et al.
Publicado: (2020) -
Machine Learning for Causal Inference in Biological Networks: Perspectives of This Challenge
por: Lecca, Paola
Publicado: (2021) -
CauseMap: fast inference of causality from complex time series
por: Maher, M. Cyrus, et al.
Publicado: (2015) -
Corrigendum: Machine Learning for Causal Inference in Biological Networks: Perspectives of This Challenge
por: Lecca, Paola
Publicado: (2022)